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Foreword
3" Edition — 2012

We are pleased to present you with the 3rd Edition of Hepatology — A Clinical
Textbook. We especially want to offer our thanks to all the authors who have
worked so hard to keep their chapters fresh and up-to-date. We have included very
exciting updates, especially regarding the new oral treatments for HCV. We also are
expanding our project to try to reach a broader range of readers and look forward to
collaborating with you to connect with newer specialists as well as those not
necessarily in large urban centers or those who have less access to information on
the latest diagnostics and treatments.

We would be especially interested in hearing from you regarding your experience
with the book, and how it could be made better for you. Please let us know at
www.hepatolgytextbook.com where you can also download this book by chapter, by
section or the full book, 100% free. We hope you can give us a few minutes of your
time to help us make the next edition better for you and that this project can
continue to be a lasting success.

The Editors
Stefan Mauss, Thomas Berg, Jirgen Rockstroh, Christoph Sarrazin, Heiner Wedemeyer

Foreword
2" Edition — 2010

Because hepatology is such a dynamic and exciting area of medicine, regular
updates are mandatory in keeping a clinical textbook useful. We are delighted to
present this second edition of Hepatology — A Clinical Textbook. The first edition
was a major success, with more than 80,000 downloads worldwide. In addition, a
Romanian translation was carried out by Camelia Sultana and Simona Ruta shortly
after the appearance of the first edition. We invite qualified people everywhere to do
the same, into any appropriate language! This web-based free-of-charge concept
made possible by unrestricted grants from Roche and Gilead has allowed the
material to reach countries usually not easily covered by print media, a special
quality of this project. We hope this second edition of Hepatology — A Clinical
Textbook will continue to be a vluable source of information for our readers.

The Editors
Stefan Mauss, Thomas Berg, Jirgen Rockstroh, Christoph Sarrazin, Heiner Wedemeyer
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Preface

Hepatology is a rapidly evolving field that will continue to grow and maintain
excitement over the next few decades. Viral hepatitis is not unlike HIV 10 or 15
years ago. Today, hepatitis B viral replication can be suppressed by potent antiviral
drugs, although there are risks regarding the emergence of resistance. Strategies to
enhance the eradication rates of HBV infection still need to be developed. On the
other hand, hepatitis C virus infection can be eradicated by treatment with pegylated
interferon plus ribavirin, although the sustained virologic response rates are still
suboptimal, particularly in those infected by genotype 1. Many new antiviral drugs,
especially protease and polymerase inhibitors, are currently in preclinical and
clinical development, and the first data from larger clinical trials provide some
optimism that the cure rates for patients with chronic hepatitis C will be enhanced
with these new agents. In other areas of hepatology, e.g., hereditary and metabolic
liver diseases, our knowledge is rapidly increasing and new therapeutic options are
on the horizon.

In rapidly evolving areas such as hepatology, is the book format the right medium
to gather and summarise the current knowledge? Are these books not likely to be
outdated the very day they are published? This is indeed a challenge that can be
convincingly overcome only by rapid internet-based publishing with regular
updates. Another unmatched advantage of a web-based book is the free and
unrestricted global access. Viral hepatitis and other liver diseases are a global
burden and timely information is important for physicians, scientists, patients and
health care officials all around the world.

The editors of this web-based book — Thomas Berg, Stefan Mauss, Jirgen
Rockstroh, Christoph Sarrazin and Heiner Wedemeyer — are young, bright, and
internationally renowned hepatologists who have created an excellent state-of-the-
art textbook on clinical hepatology. The book is well-written and provides in-depth
information without being lengthy or redundant. I am convinced that all five experts
will remain very active in the field and will continue to update this book regularly as
the science progresses. This e-book should rapidly become an international
standard.

Stefan Zeuzem — Frankfurt, January 2009

Preface

Therapeutic options and diagnostic procedures in hepatology have quickly advanced
during the last decade. In particular, the management of viral hepatitis has
completely changed since the early nineties. Before nucleoside and nucleotide
analogs were licensed to treat hepatitis B and before interferon o + ribavirin
combination therapy were approved for the treatment of chronic hepatitis C, very
few patients infected with HBV or HCV were treated successfully. The only option
for most patients with end-stage liver disease or hepatocellular carcinoma was liver
transplantation. And even if the patients were lucky enough to be successfully
transplanted, reinfection of the transplanted organs remained major challenges. In
the late eighties and early nineties discussions were held about rejecting patients
with chronic hepatitis from the waiting list as post-transplant outcome was poor.
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Today, just 15 years later, hepatitis B represents one of the best indications for liver
transplantations, as basically all reinfection can be prevented. In addition, the
proportion of patients who need to be transplanted is declining — almost all HBV-
infected patients can nowadays be treated successfully with complete suppression of
HBYV replication and some well-selected patients may even be able to clear HBSAg,
the ultimate endpoint of any hepatitis B treatment.

Hepatitis C has also become a curable disease with a sustained response of 50-
80% using pegylated interferons in combination with ribavirin. HCV treatment
using direct HCV enzyme inhibitors has started to bear fruit (we draw your attention
to the HCV Chapters).

Major achievements for the patients do sometimes lead to significant challenges
for the treating physician. Is the diagnostic work-up complete? Did | any recent
development to evaluate the stage and grade of liver disease? What sensitivity is
really necessary for assays to detect hepatitis viruses? When do I need to determine
HBV polymerase variants, before and during treatment of hepatitis B? When can |
safely stop treatment without risking a relapse? How to treat acute hepatitis B and
C? When does a health care worker need a booster vaccination for hepatitis A and
B? These are just some of many questions we have to ask ourselves frequently
during our daily routine practice. With the increasing number of publications,
guidelines and expert opinions it is getting more and more difficult to stay up-to-
date and to make the best choices for the patients. That is why HEPATOLOGY 2012
— A Clinical Textbook is a very useful new tool that gives a state-of-the art update
on many aspects of HAV, HBV, HCV, HDV and HEV infections. The editors are
internationally-known experts in the field of viral hepatitis; all have made
significant contributions to understanding the pathogenesis of virus-induced liver
disease, diagnosis and treatment of hepatitis virus infections.

HEPATOLOGY 2012 — A Clinical Textbook gives a comprehensive overview on
the epidemiology, virology, and natural history of all hepatitis viruses including
hepatitis A, D and E. Subsequent chapters cover all major aspects of the
management of hepatitis B and C including coinfections with HIV and liver
transplantation. Importantly, complications of chronic liver disease such as
hepatocellular carcinoma and recent developments in assessing the stage of liver
disease are also covered. Finally, interesting chapters on autoimmune and metabolic
non-viral liver diseases complete the book.

We are convinced that this new up-to-date book covering all clinically relevant
aspects of viral hepatitis will be of use for every reader. The editors and authors
must be congratulated for their efforts.

Michael P. Manns — Hannover, January 2009
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1. Hepatitis A

Sven Pischke and Heiner Wedemeyer

The virus

Hepatitis A is an inflammatory liver disease caused by infection with the hepatitis A
virus (HAV). HAYV is a single-stranded 27 nm non-enveloped, icosahedral RNA
virus, which was first identified by immune electron microscopy in 1973 (Feinstone
1973). The virus belongs to the hepadnavirus genus of the Picornaviridiae.

Seven different HAV genotypes have been described, of which four are able to
infect humans (Lemon 1992).

The positive-sense single-stranded HAV RNA has a length of 7.5 kb and consists
of a a 5’ non-coding region of 740 nucleotides, a coding region of 2225 nucleotides
and a 3’ non-coding region of approximately 60 nucleotides.

Epidemiology

HAV infections occur worldwide, either sporadically or in epidemic outbreaks. An
estimated 1.4 million cases of HAV infections occur each year. HAV is usually
transmitted and spread via the fecal-oral route (Lemon 1985). Thus, infection with
HAV occurs predominantly in areas with lower socio-economic status and reduced
hygienic standards, especially in developing, tropical countries. In industrialised
countries like the US or Germany the number of reported cases has decreased
markedly in the past decades, according to official data published by the Centers for
Disease Control and Prevention (CDC, Atlanta, USA) and the Robert Koch Institute
(RKI, Berlin, Germany) (Figure 1). This decrease is mainly based on improved
sanitary conditions and anti-HAV vaccination. Vaccination programs have also
resulted in fewer HAV infections in various endemic countries including Argentina,
Brazil, Italy, China, Russia, Ukraine, Spain, Belarus, Israel and Turkey (Hendrickx
2008).

Transmission

HAV is usually transmitted fecally-orally either by person-to-person contact or
ingestion of contaminated food or water. Five days before clinical symptoms
appear, the virus can be isolated from feces of patients (Dienstag 1975). The
hepatits A virus usually stays detectable in the feces up to two weeks after the onset
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of jaundice. Fecal excretion of HAV up to five months after infection can occur in
children and immunocompromised persons.

Risk groups for acquiring an HAV infection in Western countries are health care
providers, military personnel, psychiatric patients and men who have sex with men.
Parenteral transmission by blood transfusion has been described but is a rare event.
Mother-to-fetus transmission has not been reported (Tong 1981).
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Figure 1. Number of reported cases of HAV infections in the USA and Germany
within the last decade. (Sources: CDC and Robert Koch Institut, data for 2010 for the
US are not yet available.)

Clinical course

The clinical course of HAV infection varies greatly, ranging from asymptomatic,
subclinical infections to cholestatic hepatitis or fulminant liver failure. Most
infections in children are either asymptomatic or unrecognized while 70% of adults
develop clinical symptoms of hepatitis with jaundice and hepatomegaly.

The incubation time ranges between 15 to 49 days with a mean of approximately
30 days (Koff 1992). Initial symptoms are usually non-specific and include
weakness, nausea, vomiting, anorexia, fever, abdominal discomfort, and right upper
quadrant pain (Lednar 1985). As the disease progresses, some patients develop
jaundice, darkened urine, uncoloured stool and pruritus. The prodromal symptoms
usually diminish when jaundice appears.

Approximately 10% of infections take a biphasic or relapsing course. In these
cases the initial episode lasts about 3-5 weeks, followed by a period of biochemical
remission with normal liver enzymes for 4-5 weeks. Relapse may mimic the initial
episode of the acute hepatitis and complete normalization of ALT and AST values
may take several months. (Tong 1995).
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Cases of severe fulminant HAV infection leading to hepatic failure occur more
often in patients with underlying liver disease. Conflicting data on the course of
acute hepatitis A have been reported for patients with chronic hepatitis C. While
some studies showed a higher incidence of fulminant hepatitis (\Vento 1998), other
studies do not confirm these findings and even suggest that HAV superinfection
may lead to clearance of HCV infection (Deterding 2006). Other risk factors for
more severe courses of acute hepatitis A are age, malnutrition and
immunosuppression.

In contrast to hepatitis E, there are no precise data on the outcome of HAV
infection during pregnancy. Some data suggest an increased risk of gestational
complications and premature birth (Elinav 2006).

HAV infection has a lethal course in 0.1% of children, in 0.4% of persons aged
15-39 years, and in 1.1% in persons older than 40 years (Lemon 1985). In contrast
to the other fecally-orally transmitted hepatitis, hepatitis E, no chronic courses of
HAV infection have been reported so far.

Extrahepatic manifestations

Extrahepatic manifestations are uncommon in HAV (Pischke 2007). If they occur,
extrahepatic symptoms usually show an acute onset and disappear upon resolution
of HAV infection in most cases. Possible extrahepatic manifestations of acute HAV
infection are arthralgia, diarrhea, renal failure, red cell aplasia, generalised
lymphadenopathy, and pancreatitis. Arthralgia can be found in 11% of patients with
hepatitis A.

Very uncommon are severe extrahepatic manifestations like pericarditis and/or
renal failure. An association of hepatitis A with cryoglobulinemia has been reported
but is a rare event (Schiff 1992). Furthermore, cutaneous vasculitis can occur. In
some cases, skin biopsies reveal anti-HAV-specific IgM antibodies and
complements in the vessel walls (Schiff 1992). In contrast to hepatitis B or C, renal
involvement is rare, and there are very few case reports showing acute renal failure
associated with HAV infection (Pischke 2007). Recently it has been shown that
approximately 8% of hepatitis A cases are associated with acute kidney injury (Choi
2011).

Diagnosis

Diagnosis of acute HAV infection is based on the detection of anti-HAV IgM
antibodies or HAV RNA. The presence of HAV IgG antibodies can indicate acute
or previous HAV infection. HAV IgM and IgG antibodies also become positive
early after vaccination, with 1gG antibodies persisting for at least two to three
decades after vaccination. Available serological tests show a very high sensitivity
and specificity.

Delayed seroconversion may occur in immunocompromised individuals, and
testing for HAV RNA should be considered in immunosuppressed individuals with
unclear hepatitis. HAV RNA testing of blood and stool can determine if the patient
is still infectious. However, it has to be kept in mind that various in-house HAV
RNA assays may not be specific for all HAV genotypes and thus false-negative
results can occur.
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Elevated results for serum aminotransferases and serum bilirubin can be found in
symptomatic patients (Tong 1995). ALT levels are usually higher than serum
aspartate aminotransferase (AST) in non-fulminant cases. Increased serum levels of
alkaline phosphatase and gamma-glutamyl transferase indicate a cholestatic form of
HAV infection. The increase and the peak of serum aminotransferases usually
precede the increase of serum bilirubin. Laboratory markers of inflammation, like
an elevated erythrocyte sedimentation rate and increased immunoglobulin levels,
can also frequently be detected.

Treatment and prognosis

There is no specific antiviral therapy for treatment of hepatitis A. The disease
usually takes a mild to moderate course, which requires no hospitalisation, and only
in fulminant cases is initiation of symptomatic therapy necessary. Prolonged or
biphasic courses should be monitored closely. HAV may persist for some time in
the liver even when HAV RNA becomes negative in blood and stool (Lanford
2011), which needs to be kept in mind for immunocompromised individuals. Acute
hepatitis may rarely proceed to acute liver failure; liver transplantation is required in
few cases. In the US, 4% of all liver transplantations performed for acute liver
failure were due to hepatitis A (Ostapowicz 2002). In a cohort of acute liver failures
at one transplant center in Germany approximately 1% of patients suffered from
HAV infection (Hadem 2008). The outcome of patients after liver transplantation
for fulminant hepatitis A is excellent. Timely referral to liver transplant centers is
therefore recommended for patients with severe or fulminant hepatitis A.
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2. Hepatitis B

Christoph Boesecke and Jan-Christian Wasmuth

Introduction

It is estimated that approximately 30% of the world's population has had contact
with or are carriers of the hepatitis B virus (HBV). An estimated 350 million of
them are HBV carriers (Goldstein 2005). Thus, HBV infection is one of the most
important infectious diseases worldwide. Around one million persons die of HBV-
related causes annually. There is a wide range of HBV prevalence rates in different
parts of the world. HBV prevalence varies from 0.1% up to 20%. Low prevalence
areas (0.1-2%) are Western Europe (with wide variation within Europe), United
States and Canada, Australia and New Zealand; intermediate prevalence (3-5%) are
the Mediterranean countries, Japan, Central Asia, the Middle East, and Latin and
South America; and high prevalence areas (10-20%) include southeast Asia, China,
and sub-Saharan Africa. This diversity is probably related to differences in age at
infection, which correlates with the risk of chronicity. The progression rate from
acute to chronic HBV infection decreases with age. It is approximately 90% for an
infection acquired perinatally, and is as low as 5% (or even lower) for adults
(Stevens 1975, Wasley 2008).

The incidence of new infections has decreased in most developed countries, most
likely due to the implementation of vaccination strategies (Rantala 2008). However,
exact data is difficult to generate as many cases remain undetected due to the
asymptomatic nature of many infections (RKI 2007, CDC 2010). Nevertheless, in
Germany 2524 cases of acute hepatitis B were documented in the year 2006,
corresponding to an incidence rate of 1.4 per 100,000 inhabitants. In 1997 there
were 6135 documented cases of acute hepatitis B. Likewise, the incidence of acute
hepatitis B in the United States has decreased by 78% from 1990 to 2005 (Wasley
2008). It is expected that this number will further decrease in countries with
implementation of vaccination programs. In Germany 87% of all children starting
school were fully vaccinated in 2006 with a trend toward increasing coverage
(Poethko-Muller 2007). Interestingly, recent data from a Swiss clinic indicate that
uptake in HBV vaccinations is significantly higher when vaccination is endorsed by
nurses rather than the patients’ physician (Blanco 2011).



Hepatitis B 33

Although the incidence of acute HBV infection has decreased in most countries
due to the implementation of vaccination programs, HBV-related complications
such as cancers and deaths have been on the increase (Gomaa 2008, Hatzakis 2011).
Reasons might be the delay of vaccination effects, improved diagnosis, and better
documentation of HBV cases. Although a drop in prevalence has been observed in
many countries, estimates are difficult due to a continuously growing migration
from high or medium prevalence areas to low prevalence areas (Belongia 2008).

Transmission

The routes of HBV transmission:

— Sexual

— Percutaneous (Intravenous Drug Use)

— Perinatal

— Horizontal

— Transfusion

— Nosocomial infection (including needle-stick injury)
— Organ transplantation

There is considerable variation in the predominance of transmission modes in
different geographic areas. For example, in low prevalence areas such as Western
Europe, the routes are mainly unprotected sexual intercourse and intravenous drug
use. In high prevalence areas like sub-Saharan Africa perinatal infection is the
predominant mode of transmission. Horizontal transmission, particularly in early
childhood, is regarded as the major route of transmission in intermediate prevalence
areas.

Sexual transmission

In low prevalence areas sexual transmission is the major route of transmission.
Approximately 40% of new HBV infections in the United States is considered to be
transmitted via heterosexual intercourse, and 25% occurs in men who have sex with
men (MSM) (Wasley 2008). Measures to prevent HBV transmission are vaccination
and safer sex, i.e., use of condoms. However, there is ongoing debate regarding
what to advise low-viremic patients.

Percutaneous inoculation

Percutaneous transmission seems to be an effective mode of HBV transmission. The
most important route is sharing syringes and needles by intravenous drug users. In
low prevalence areas such as Europe and the United States about 15% of newly
diagnosed HBYV infections is in the IVDU population (Wasley 2008). The risk of
HBV transmission increases with the number of years of drug use, frequency of
injection, and sharing of drug preparation equipment.

Other situations with possible percutaneous inoculation of HBV are sharing
shaving razors or toothbrushes, although the exact number remains unknown. In
addition, certain practices like acupuncture, tattooing, and body piercing have been
associated with transmission of hepatitis B. Public health education and the use of
disposable needles or equipment are important methods of prevention.
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Perinatal transmission

Transmission from an HBeAg-positive mother to her infant may occur in utero, at
the time of birth, or after birth. The rate of infection can be as high as 90%.
However, neonatal vaccination is highly efficacious (95%). Its efficacy indicates
that most infections occur at or shortly before birth. On the other hand, caesarean
section seems not be as protective as it is in other vertically transmitted diseases like
HIV.

The risk of transmission from mother to infant is related to the HBV replicative
rate in the mother. There seems to be a direct correlation between maternal HBV
DNA levels and the likelihood of transmission. In mothers with highly replicating
HBYV the risk of transmission may be up to 85 to 90%, and continuously lowers with
lower HBV DNA levels (Burk 1994). In some studies there has been almost no
perinatal transmission if the mother has no significant ongoing replication (<10° log
copies/ml) (Li 2004).

It is possible to reduce the risk of perinatal transmission in several ways. The first
step is identification of persons at risk. Testing for HBsAg should be performed in
all women at the first prenatal visit and repeated later in pregnancy if appropriate
(CDC 2011). Newborns born to HBV-positive mothers can be effectively protected
by passive-active immunisation (>90% protection rate) (del Canho 1997, Dienstag
2008). Hepatitis B immunoglobulin for passive immunization should be given as
early as possible (within 12 hours), but can be given up to seven days after birth if
seropositivity of the mother is detected later. Active immunisation follows a
standard regimen and is given at three time points (10 pg at day 0, month 1, and
month 6). Anti-HBV treatment of the mother with nucleoside analogs may be
discussed, especially in mothers with high HBV DNA levels, i.e., HBV DNA >10°
copies/ml or 2x10° 1U/ml. In one randomised, prospective, placebo-controlled
study, treatment of the mother with telbivudine resulted in prevention of almost all
cases of vertical transmission compared to a vertical transmission rate of about 10%
in the arm receiving only active and passive immunisation (Han 2011). Telbivudine
or tenofovir seem to be the treatment of choice. Adefovir and entecavir are not
recommended in pregnancy (Cornberg 2011).

As mentioned earlier, caesarean section should not be performed routinely, except
in cases of high viral load. If the child is vaccinated, (s)he may be breastfed (Hill
2002).

Horizontal transmission

Children may acquire HBV infection through horizontal transmission via minor
breaks in the skin or mucous membranes or close bodily contact with other children.
In addition, HBV can survive outside the human body for a prolonged period; as a
result, transmission via contaminated household articles such as toothbrushes, razors
and even toys may be possible. Although HBV DNA has been detected in various
bodily secretions of hepatitis B carriers, there is no firm evidence of HBV
transmission via body fluids other than blood.

Blood transfusion

Blood donors are routinely screened for hepatitis B surface antigen (HBsSAQ).
Therefore incidence of transfusion-related hepatitis B has significantly decreased.
The risk of acquiring post-transfusion hepatitis B depends on factors like prevalence
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and donor testing strategies. In low prevalence areas it is estimated to be one to four
per million blood components transfused (Dodd 2000, Polizzotto 2008). In high
prevalence areas it is considerably higher (around 1 in 20,000) (Shang 2007,
Vermeulen 2011).

There are different strategies for donor screening. Most countries use HBsSAg
screening of donors. Others, like the United States, use both HBsAg and anti-HBc.
Routine screening of anti-HBc remains controversial, as the specificity is low and
patients with cleared hepatitis have to be excluded. Screening of pooled blood
samples or even individual samples may be further improved by nucleic acid
amplification techniques. However, this is an issue of continuous debate due to
relatively low risk reduction and associated costs.

Nosocomial infection

Nosocomial infection can occur from patient to patient, from patient to health care
worker and vice versa. HBV is considered the most commonly transmitted blood-
borne virus in the healthcare setting.

In general, nosocomial infection of hepatitis B can and should be prevented.
Despite prevention strategies, documented cases of nosocomial infections do occur
(Williams 2004). However, the exact risk of nosocomial infection is unknown. The
number of infected patients reported in the literature is likely to be an underestimate
of true figures as many infected patients may be asymptomatic and only a fraction
of exposed patients are recalled for testing.

Strategies to prevent nosocomial transmission of hepatitis B:

use of disposable needles and equipment,
sterilization of surgical instruments,
infection control measures, and
vaccination of healthcare workers.

Due to the implementation of routine vaccination of health care workers the
incidence of HBV infection among them is lower than in the general population
(Duseja 2002, Mahoney 1997). Therefore, transmission from healthcare workers to
patients is a rare event, while the risk of transmission from an HBV-positive patient
to a health care worker seems to be higher.

Healthcare workers positive for hepatitis B are not generally prohibited from
working. However, the individual situation has to be evaluated in order to decide on
the necessary measures. Traditionally, HBeAg-negative healthcare workers are
considered not to be infective, whereas HBeAg-positive healthcare workers should
wear double gloves and not perform certain activities, to be defined on an individual
basis. However, there have been cases of transmission of hepatitis B from HBsAg-
positive, HBeAg-negative surgeons to patients (Teams 1997). Hepatitis B virus has
been identified with a precore stop codon mutation resulting in non-expression of
HBeAg despite active HBV replication. Therefore, HBV DNA testing has been
implemented in some settings, although this may not always be reliable due to
fluctuating levels of HBV DNA. In most developed countries guidelines for
hepatitis B positive healthcare workers have been established and should be
consulted.
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Organ transplantation

Transmission of HBV infection has been reported after transplantation of
extrahepatic organs from HBsAg positive donors (e.g., kidney, cornea) (Dickson
1997). Therefore, organ donors are routinely screened for HBsAg. The role of anti-
HBc is controversial, as it is in screening of blood donors. Reasons are the
possibility of false positive results, the potential loss of up to 5% of donors even in
low endemic areas, and the uncertainty about the infectivity of organs, especially
extrahepatic organs, from donors who have isolated anti-HBc (Dickson 1997).
There is an increased risk of HBV infection for the recipient if organs of such
donors are transplanted as compared to anti-HBc negative donors.

Postexposure prophylaxis

In case of exposure to HBV in any of the circumstances mentioned above,
postexposure prophylaxis is recommended for all non-vaccinated persons. A
passive-active immunization is recommended. The first dose of active immunization
should be given as early as possible. 12 hours after the exposure is usually
considered the latest time point for effective postexposure prophylaxis. One dose of
hepatitis B-immunoglobulin (HBIG) should be administered at the same time, if the
source is known to be HBsAg-positive. The other two doses of vaccine should be
administered according to the usual schedule.

Vaccinated individuals with a documented response do not need postexposure
prophylaxis. Individuals who have had no post-vaccination testing should be tested
for anti-HBs titer as soon as possible. If this is not possible, or the anti-HBs titer is
insufficient (<100 IU/1), they will require a second course of vaccination.

Individuals who are documented non-responders will require two doses of HBIG
given one month apart.

Natural history and clinical manifestations

The spectrum of clinical manifestations of HBV infection varies in both acute and
chronic disease. During the acute phase, manifestations range from subclinical or
anicteric hepatitis to icteric hepatitis and, in some cases, fulminant hepatitis. During
the chronic phase, manifestations range from an asymptomatic carrier state to
chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Extrahepatic
manifestations can occur in both acute and chronic infection.

Acute hepatitis

After HBV transmission, the incubation period lasts from one to four months. A
prodromal phase may appear before acute hepatitis develops. During this period a
serum sickness-like syndrome may develop. This syndrome manifests with fever,
skin rash, arthralgia and arthritis. It will usually cease with the onset of hepatitis. At
least 70% of patients will then have subclinical or anicteric hepatitis, while less than
30% will develop icteric hepatitis. The most prominent clinical symptoms of
hepatitis are right upper quadrant discomfort, nausea, jaundice and other unspecific
constitutional symptoms. In case of coinfection with other hepatitis viruses or other
underlying liver disease the clinical course may be more severe. The symptoms
including jaundice generally disappear after one to three months, but some patients
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have prolonged fatigue even after normalisation of serum aminotransferase
concentrations.

Concentrations of alanine and aspartate aminotransferase levels (ALT and AST)
may rise to 1000-2000 IU/L in the acute phase. ALT is typically higher than AST.
Bilirubin concentration may be normal in a substantial portion of patients. In
patients who recover, normalisation of serum aminotransferases usually occurs
within one to four months. Persistent elevation of serum ALT for more than six
months indicates progression to chronic hepatitis.

The rate of progression from acute to chronic hepatitis B is primarily determined
by the age at infection (Ganem 2004, McMahon 1985). In adult-acquired infection
the chronicity rate is 5% or less, whereas it is higher if acquired at younger ages. It
is estimated to be approximately 90% for perinatally-acquired infection, and 20-
50% for infections between the ages of one and five years.

Until recently it was assumed that patients who recover from acute hepatitis B
actually clear the virus from the body. However, there is a lot of evidence now
suggesting that even in patients positive for anti-HBs and anti-HBc HBV DNA may
persist lifelong in the form of covalently closed circular DNA (cccDNA) and this
latent infection maintains the T cell response that keeps the virus under control
(Yotsuyanagi 1998, Guner 2011). Complete eradication rarely occurs. This is an
important finding, as immunosuppression can lead to reactivation of the virus, e.g.,
after organ transplant or during chemotherapy.

Fulminant hepatic failure is unusual, occurring in approximately 0.1-0.5% of
patients. Reasons and risk factors for fulminant hepatitis B are not well understood
(Garfein 2004). There may be correlation with substance abuse or coinfections with
other viruses. Fulminant hepatitis B is believed to be due to massive immune-
mediated lysis of infected hepatocytes. This is why many patients with fulminant
hepatitis B have no evidence of HBV replication at presentation.

Antiviral treatment of patients with acute hepatitis B usually is not recommended
(Cornberg 2011). In adults, the likelihood of fulminant hepatitis B is less than 1%,
and the likelihood of progression to chronic hepatitis B is less than 5%. Therefore,
treatment of acute hepatitis B is mainly supportive in the majority of patients.
Treatment can be considered in certain subsets of patients, e.g., patients with a
severe or prolonged course of hepatitis B, patients coinfected with other hepatitis
viruses or underlying liver diseases, patients with immunosuppression, or patients
with fulminant liver failure undergoing liver-transplantation (Kondili 2004,
Tillmann 2006). However, early intervention may interfere with the immune
response and decrease the likelihood of immune control of HBV infection, thus
facilitating chronicity (Tillmann 2006).

In addition, contacts of the patient should be checked for exposure to hepatitis B.

Chronic hepatitis

The HBV chronicity rate is around 5% or less in adult-acquired infection, as
mentioned earlier. In perinatally-acquired infection it is estimated to be
approximately 90%, and 20-50% for infections between the age of one and five
years (Ganem 2004, McMahon 1985). Most patients will not have a history of acute
hepatitis.

Most patients with chronic hepatitis B are clinically asymptomatic. Some may
have nonspecific symptoms such as fatigue. In most instances, significant clinical
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symptoms will develop only if liver disease progresses to decompensated cirrhosis.
In addition, extrahepatic manifestations may cause symptoms.

Accordingly, physical examination will be normal in most instances. In advanced
liver disease there may be stigmata of chronic liver disease such as splenomegaly,
spider angiomata, caput medusae, palmar erythema, testicular atrophy,
gynecomastia, etc. In patients with decompensated cirrhosis, jaundice, ascites,
peripheral edema, and encephalopathy may be present.

Laboratory testing shows mild to moderate elevation in serum AST and ALT in
most patients, whereas normal transaminases occur rarely. During exacerbation,
serum ALT concentration may be as high as 50 times the upper limit of normal.
Alfa-fetoprotein concentrations correlate with disease activity. In exacerbations of
hepatitis B, concentrations as high as 1000 ng/mL may be seen.

The natural course of chronic HBV infection is determined by the interplay of
viral replication and the host immune response. Other factors that may play a role in
the progression of HBV-related liver disease include gender, alcohol consumption,
and concomitant infection with other hepatitis virus(es). The outcome of chronic
HBV infection depends upon the severity of liver disease at the time HBV
replication is arrested. Liver fibrosis is potentially reversible once HBV replication
is controlled.

There are two different states that are distinguished in chronic HBV infection:
first, a high-replicative state with active liver disease and elevated serum ALT.
HBV DNA and HBeAg are present. Second, a low or non-replicative phase, where
serum ALT may normalize, HBeAg disappears, and anti-HBe antibodies appear. In
some patients, viral replication stops completely, as demonstrated by sensitive HBV
DNA assays, although they remain HBsAg-positive. These patients have
undetectable HBV DNA in serum and normal ALT concentrations. No sign of
ongoing liver damage or inflammation is found on liver biopsy. This state is called
inactive carrier state.

A small percentage of patients continue to have moderate levels of HBV
replication and active liver disease (elevated serum ALT and chronic inflammation
on liver biopsies) but remain HBeAg negative. These patients with HBeAg-negative
chronic hepatitis may have residual wild type virus or HBV variants that cannot
produce HBeAg due to precore or core promoter variants.

The first high-replicative phase may switch into the non-replicative phase either
spontaneously or upon antiviral treatment. Conversely, the non-replicative phase
may reactivate to the high-replicative phase either spontaneously or with
immunosuppression (e.g., in HIV infection or with chemotherapy).

In perinatally-acquired chronic HBV infection there are three different states: An
immune tolerance phase, an immune clearance phase, and a late non-replicative
phase.

The immune tolerance phase, which usually lasts 10-30 years, is characterized by
high levels of HBV replication, as manifested by the presence of HBeAg and high
levels of HBV DNA in serum. However, there is no evidence of active liver disease
as seen by normal serum ALT concentrations and minimal changes in liver biopsy.
It is thought that this lack of liver disease despite high levels of HBV replication is
due to immune tolerance to HBV (Dienstag 2008), although the exact mechanisms
are unknown. This phenomenon of immune tolerance is believed to be the most
important reason for the poor response to interferon therapy in HBeAg-positive
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patients with normal ALT levels. During this phase there is a very low rate of
spontaneous HBeAg clearance. It is estimated that the rate of spontaneous HBeAg
clearance is only 15% after 20 years of infection.

During the second to third decade, the immune-tolerance phase may convert to
one of immune clearance. The spontaneous HBeAg clearance rate increases. It is
estimated to be 10 to 20% annually. If HBeAg seroconversion occurs, exacerbations
of hepatitis with abrupt increases in serum ALT are very often observed. These
exacerbations follow an increase in HBV DNA and might be due to a sudden
increase in immune-mediated lysis of infected hepatocytes. Most often there are no
clinical symptoms during exacerbation, and rise of ALT is only detected by routine
examinations. Some patients may develop symptoms mimicking acute hepatitis.
Titers of anti-HBc 1gM may rise as well as alfa-fetoprotein. If such patients are not
known to be HBV-infected, misdiagnosis of acute hepatitis B can be made. HBeAg
seroconversion and clearance of HBV DNA from the serum is not always achieved
after exacerbation. In these patients recurrent exacerbation with intermittent
disappearance of serum HBV DNA with or without HBeAg loss may occur. The
non-replicative phase is usually characterized by the absence of HBV DNA and
normalisation of serum ALT, like in adult chronic HBV.

Very few patients with chronic HBV infection become HBsAg-negative in the
natural course of infection. The annual rate of HBsAg clearance has been estimated
to be less than 2% in Western patients and even lower (0.1-0.8%) in patients of
Asian origin (Liaw 1991) following an accelerated decrease in HBsAg levels during
the 3 years before HBsAg seroclearance (Chen 2011). If loss of HBSAg occurs,
prognosis is considered favourable. However, clearance of HBSAg does not exclude
development of cirrhosis or hepatocellular carcinoma in some patients, although the
exact rate of these complications is not known. This phenomenon is thought to be
linked to the fact that HBV DNA may still be present in hepatocytes despite HBsAg
loss.

Prognosis and survival

As clinical course varies among patients, there is a wide variation in clinical
outcome and prognosis of chronic HBV infection. The lifetime risk of a liver-related
death has been estimated to be 40-50% for men and 15% for women. The risk of
progression appears to be higher if immune activation occurs. The estimated five-
year rates of progression (Fattovich 2008):

— Chronic hepatitis to cirrhosis — 10-20%
— Compensated cirrhosis to hepatic decompensation — 20-30%
— Compensated cirrhosis to hepatocellular carcinoma — 5-15%

Accordingly, the survival rates are:

— Compensated cirrhosis - 85% at five years
— Decompensated cirrhosis - 55-70% at one year and 15-35% at five years

Viral replication

In patients with signs of viral replication (i.e., HBeAg-positive) survival is
consistently worse than in patients who are HBeAg-negative. However, in recent
decades, infections with HBeAg-negative precore mutants prevail by far in newly-
acquired infections, resulting in a different pattern of HBeAg-negative and HBV
DNA-positive hepatitis with fibrosis progression and HCC in a substantial
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proportion of patients. In recent years, the amount of HBV DNA has also been
linked to disease progression and has replaced HBeAg-positivity as a marker for
disease activity (Chen 2006). This is true both for progression to cirrhosis as well as
for the risk of HCC. Therefore, most treatment guidelines today are based on the
level of HBV viremia. A reasonable cut-off to distinguish patients with a low risk of
progression from patients with a high risk and indication for antiviral treatment is
10* copies/ml (corresponding to approximately 2 x 10° 1U/ml) (Cornberg 2011),
although other cut-offs may be used.

The duration of viral replication is obviously linked with the risk of development
of cirrhosis and HCC. As necroinflammation may persist longer in patients with a
prolonged replicative phase, the risk of disease progression is elevated. Conversely,
even in patients with decompensated cirrhosis, suppression of HBV replication and
delayed HBsAg clearance can result in improvement in liver disease (Fung 2008).

Alcohol use

HBYV infection in heavy alcohol users is associated with faster progression to liver
injury and an elevated risk of developing cirrhosis and HCC (Bedogni 2008,
Marcellin 2008). Survival is reduced compared to HBV-negative heavy alcohol
users. However, there is no clear evidence that heavy alcohol use is associated with
an enhanced risk of chronic HBV infection, although prevalence of HBV is
estimated to be fourfold higher than in controls (Laskus 1992) with variation among
regions and cohorts (Rosman 1996).

Hepatitis C coinfection

If coinfection of HCV and HBV occurs, HCV usually predominates. This may lead
to lower levels of transaminases and HBV DNA (Jardi 2001). The rate of HBsAg
seroconversion even appears to be increased, although this finding may be due to
the fact that around one third of patients coinfected with HBV and HCV lack
markers of HBV infection (i.e., HBsAg) although HBV DNA is detectable. Despite
lower aminotransferases and HBV DNA levels, liver damage is worse in most
instances. The risks of severe hepatitis and fulminant hepatic failure seem to be
elevated if both infections occur simultaneously regardless of whether it is an acute
coinfection of HBV and HCV or acute hepatitis C in chronic hepatitis B (Liaw
2004).

Hepatitis D coinfection

Acute HBV and HDV coinfection tends to be more severe than acute HBV infection
alone. It is more likely to result in fulminant hepatitis. If HDV superinfection in
patients with chronic HBV infection occurs, HDV usually predominates, and HBV
replication is suppressed (Jardi 2001). Severity of liver disease is worse and
progression to cirrhosis is accelerated (Fattovich 2000, Grabowski 2010).

It is very difficult to predict the individual course of hepatitis B due to the many
factors influencing disease progression. Several predictive models of disease
progression that include clinical parameters (e.g., hepatic decompensation) and
laboratory parameters (e.g., bilirubin, INR) have been evaluated, but none of these
is used routinely in the clinic at present. In patients with cirrhosis, the MELD-score
(Model for End-Stage Liver Disease) and the CHILD-Pugh score are used (see
Chapter 3).
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Extrahepatic manifestations

The two major extrahepatic complications of chronic HBV are polyarteritis nodosa
and glomerular disease. They occur in 10-20% of patients with chronic hepatitis B
and are thought to be mediated by circulating immune complexes (Han 2004).

Polyarteritis nodosa
The clinical manifestations are similar to those in patients with polyarteritis who are
HBV-negative. There may be some clinical benefit to antiviral therapy.

Nephropathy/Glomerulonephritis
HBV can induce both membranous nephropathy and, less often,
membranoproliferative glomerulonephritis. Most cases occur in children. The
clinical hallmark is proteinuria. In contrast to polyarteritis nodosa, there is no
significant benefit of antiviral treatment.

For further details, please refer to extrahepatic manifestations in Chapter 16.
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3. Hepatitis C

Christoph Boesecke and Jan-Christian Wasmuth

Epidemiology

Hepatitis C is a disease with a significant global impact. According to the World
Health Organization there are 130-170 million people infected with the hepatitis C
virus (HCV), corresponding to 2-2.5% of the world’s total population. There are
considerable regional differences. In some countries, e.g., Egypt, the prevalence is
as high as 22% (WHO 2011). In Africa and the western Pacific the prevalence is
significantly higher than in North America and Europe (RKI 2004).

It is estimated that there are 2-5 million HCV-positive persons in Europe. The
prevalence of HCV antibodies in otherwise healthy blood donors is approximately
1.6% in the United States, 1.15% in lItaly, 0.4% in Germany, and 0.23% in
Scandinavia (RKI 2004, Hatzakis 2011). The number of patients HCV RNA-
positive is estimated to be around 80 to 90% of all HCV antibody-positive persons.
Certain groups are preferentially affected: The highest risk factor in most cases is
injection drug use. But patients undergoing hemodialysis and persons who received
blood transfusions before 1991 are at risk also. In Europe and the United States
chronic hepatitis C is the most common chronic liver disease and the majority of
liver transplants performed are for chronic HCV.

It is difficult to determine the number of new HCV infections, as most acute cases
will not be noticed clinically. Fewer than 25% of acute cases of hepatitis C are
clinically apparent (Vogel 2009). In addition, the age of infection upon diagnosis is
not possible to determine in most cases. Nevertheless, it has to be assumed that the
number of new infections has considerably decreased over the past decades. For the
United States it is estimated that the number of new cases of acute HCV infection
has fallen from approximately 230,000 per year in the 1980s to about 20,000 cases
per year currently (Wasley 2008). This decrease is primarily associated with
reduced infections in injection drug users, a probable consequence of changes in
injection practices motivated by education about human immunodeficiency virus
(HIV) transmission. Transfusion-associated hepatitis C has had little impact on this
decline, as the number of cases has been reduced almost to zero. The only different
trend is an increase in acute hepatitis C infections in HIV-positive men who have
sex with men (MSM) globally over the last decade (Boesecke 2011).
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Transmission

Parenteral exposure to the hepatitis C virus is the most efficient means of
transmission. The majority of patients infected with HCV in Europe and the United
States acquired the disease through intravenous drug use or blood transfusion. The
latter has become rare since routine testing of the blood supply for HCV began in
the early 1990s. Other types of parenteral exposure are important in specific regions
in the world.

The following possible routes of infection have been identified in anti-HCV-
positive blood donors (in descending order of transmission risk):

— Injection drug use

— Blood transfusion

— Sex with an intravenous drug user

— Having been in jail more than three days

— Religious scarification

— Having been struck or cut with a bloody object

— Pierced ears or body parts

— Immunoglobulin injection

Very often in patients with newly diagnosed HCV infection no clear risk factor
can be identified.

Injection drug use

Injection drug use has been the most commonly identified source of acute HCV
infection. It is estimated that most newly acquired infections occur in individuals
who have injected illegal drugs. The seroprevalence of anti-HCV antibodies in
groups of intravenous drug users may be up to 70% with considerable variation
depending on factors such as region, risk behaviour, socioeconomic status, etc,
underscoring the efficiency of transmission via direct blood contact (Sutton 2008).
HCV infection also has been associated with a history of intranasal cocaine use,
presumably due to blood on shared straws or other sniffing paraphernalia. This may
explain partly the recent increase in cases of acute HCV infections in HIV-positive
MSM (Schmidt 2011).

Blood transfusion

In the past, blood transfusion or use of other blood products was a major risk factor
for transmission of HCV. In some historic cohorts 10% or more of patients who
received blood transfusions were infected with hepatitis C (Alter 1989). However,
blood donor screening for HCV since the early 1990s has nearly eliminated this
transmission route. Blood donors are screened for anti-HCV antibodies and HCV
RNA - at least in developed countries. The risk is now estimated to be between
1:500,000 and 1:1,000,000 units (Pomper 2003).

In cohorts of multiply transfused patients such as hemophiliacs, over 90% of
patients were infected with hepatitis C in the past (Francois 1993). Since the use of
routine inactivated virus (e.g., heat inactivation or pasteurization) or recombinant
clotting factors, new cases of hepatitis C infection have become uncommon in these
patients.
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Organ transplantation

Transplant recipients who receive organs from HCV-positive donors have a high
risk of acquiring HCV infection. Transmission rates in different cohorts vary from
30 to 80% (Pereira 1991, Roth 1994). Therefore, most transplant organisations have
developed strategies for screening and selective utilization of organs from anti-HCV
positive donors.

Sexual or household contact

Usual household contacts do not pose a risk of HCV transmission.

The efficiency of HCV transmission by sexual contact is very low. However,
there is no doubt that sexual transmission of hepatitis C is possible.

The exact risk of HCV transmission in monogamous heterosexual relationships
has been difficult to determine. It appears that the risk in long-term partnerships is
very low. In prospective cohorts of monogamous, heterosexual couples, there was a
long-term transmission risk of 0.01% or lower (Vandelli 2004). Factors that may
increase the risk of HCV infection include greater numbers of sex partners, history
of sexually transmitted diseases, and not using a condom. Whether underlying HIV
infection increases the risk of heterosexual HCV transmission to an uninfected
partner is unclear. Very often it is difficult to rule out the possibility that
transmission results from risk factors other than sexual exposure.

Outbreaks of cases of acute hepatitis C in several cities in Europe and the United
States among men who have sex with men (MSM) have focused attention on sexual
transmission of HCV (Boesecke 2011). There is clear evidence unprotected sex can
account for the transmission of HCV. Unprotected anal sex, fisting, having many
sex partners in a short time period, a concomitant sexually transmitted disease
including HIV and use of recreational drugs were identified as risk factors (Danta
2007, Schmidt 2011). It appears that mucosal damage is a prerequisite for HCV
transmission. According to these observations, the seroprevalence of HCV in MSM
ranges from about 4 to 8%, which is higher than the HCV prevalence reported for
general European populations.

Patients with acute or chronic HCV infection should be advised that transmission
to sexual contacts is a possibility, although the risk is extremely low in heterosexual
relationships. It is likely that the use of condoms will lower the risk of sexual
transmission  further. However, in most countries there are no firm
recommendations to use barrier precautions in stable monogamous sexual
partnerships. The transmission risk in MSM is considerably higher so that — in
conjunction with the risk of other sexually transmitted diseases — safer sex practices
are advised for this group.

Perinatal transmission

The risk of perinatal transmission of HCV in HCV RNA-positive mothers is
estimated to be 5% or less (Ohto 1994). In mothers coinfected with HIV this risk
correlates with immunosuppression and has been described in up to 20%. Today,
there are no specific recommendations for prevention of perinatal transmission
(Pembrey 2005). Cesarean section has not been shown to reduce the transmission
risk. There is no evidence that breastfeeding is a risk for infection among infants
born to HCV-infected women. Early diagnosis of infection in newborns requires
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HCV RNA testing since anti-HCV antibodies are passively transferred from the
mother.

Hemodialysis

Patients who participate in chronic hemodialysis programs are at increased risk for
hepatitis C. The prevalence of HCV antibodies in such patients reaches 15%,
although it has declined in recent years (Fissell 2004). A number of risk factors have
been identified for HCV infection among dialysis patients. These include blood
transfusions, duration of hemodialysis, prevalence of HCV infection in the dialysis
unit, and type of dialysis. The risk is higher with in-hospital hemodialysis as
opposed to peritoneal dialysis. The best strategy to prevent hemodialysis-associated
HCV transmission is subject to debate.

Other rare transmission routes

Rare sources of percutaneous transmission of HCV are contaminated equipment
used during medical procedures, procedures involved in traditional medicine (e.g.,
scarification, cupping), tattooing, and body piercing (Haley 2001). All these routes
bear the potential of transmitting HCV. However, in most instances it is not clear if
the risk is due to the procedure itself, or whether there are possible contacts with
persons involved who are HCV-positive. In addition, transmission via these routes
is so rare that persons with exposure are not at increased risk for acquiring hepatitis
C.

Needlestick injury

There is some risk of HCV transmission for health care workers after unintentional
needlestick injury or exposure to other sharp objects. The incidence of
seroconversion after exposure to an HCV-positive source is generally estimated to
be less than 2% (MMWR 2001). However, data are divergent and figures ranging
from 0 to 10% can be found (Mitsui 1992). Exposure of HCV to intact skin has not
been associated with HCV transmission.

Clinical manifestations

The spectrum of clinical manifestations of HCV infection varies in acute versus
chronic disease. Acute infection with HCV is most often asymptomatic (Vogel
2009) and leads to chronic infection in about 80% of cases. The manifestations of
chronic HCV range from an asymptomatic state to cirrhosis and hepatocellular
carcinoma. HCV infection usually is slowly progressive. Thus, it may not result in
clinically apparent liver disease in many patients if the infection is acquired later in
life. Approximately 20-30% of chronically infected individuals develop cirrhosis
over a 20-30 year period of time.

Acute hepatitis

After inoculation of HCV, there is a variable incubation period. HCV RNA in blood
(or liver) can be detected by PCR within several days to eight weeks.
Aminotransferases become elevated approximately 6-12 weeks after exposure
(range 1-26 weeks). The elevation of aminotransferases varies considerably among
individuals, but tends to be more than 10-30 times the upper limit of normal



48 Hepatology 2012

(typically around 800 U/l). HCV antibodies can be found for the first time around 8
weeks after exposure although in some patients it may take several months before
HCV antibodies can be detected by ELISA testing.

However, the majority of newly-infected patients will be asymptomatic and have
a clinically non-apparent or mild course. Jaundice as a clinical feature of acute
hepatitis C will be present in less than 25% of infected patients. Therefore, acute
hepatitis C will not be noticed in most patients (Vogel 2009). Periodic screening for
infection may be warranted in certain groups of patients who are at high risk for
infection, e.g., homosexually-active patients with HIV infection.

Other symptoms that may occur are similar to those in other forms of acute viral
hepatitis, including malaise, nausea, and right upper quadrant pain. In patients who
experience such symptoms of acute hepatitis, the illness typically lasts for 2-12
weeks. Along with clinical resolution of symptoms, aminotransferases levels will
normalize in about 40% of patients. Loss of HCV RNA, which indicates cure from
hepatitis C, occurs in fewer than 20% of patients regardless of normalisation of
aminotransferases.

Fulminant hepatic failure due to acute HCV infection is very rare. It may be more
common in patients with underlying chronic hepatitis B virus infection (Chu 1999).

Chronic hepatitis C

The risk of chronic HCV infection is high. 80-100% of patients remain HCV RNA
positive after acute hepatitis C (Alter 1999, Vogel 2009). Most of these will have
persistently elevated liver enzymes in further follow-up. By definition, hepatitis C is
regarded to be chronic after persistence of more than six months. Once chronic
infection is established, there is a very low rate of spontaneous clearance.

It is unclear why infection with HCV results in chronic infection in most cases.
Genetic diversity of the virus and its tendency toward rapid mutation may allow
HCV to constantly escape immune recognition. Host factors may also be involved
in the ability to spontaneously clear the virus. Factors that have been associated with
successful HCV clearance are HCV-specific CD4 T cell responses, high titers of
neutralising antibodies against HCV structural proteins, 1L28B gene polymorphisms
and specific HLA-DRBL1 and -DQBL1 alleles (Lauer 2001, Thomas 2009, Rauch
2010). Infection with HCV during childhood appears to be associated with a lower
risk of chronic infection, approximately 50-60% (Vogt 1999). Finally, there seem to
be ethnic differences, with lower risk of chronicity in certain populations.

Most patients with chronic infection are asymptomatic or have only mild
nonspecific symptoms as long as cirrhosis is not present (Merican 1993, Lauer
2001). The most frequent complaint is fatigue. Less common manifestations are
nausea, weakness, myalgia, arthralgia, and weight loss. HCV infection has also been
associated with cognitive impairment. All these symptoms are non-specific and do
not reflect disease activity or severity (Merican 1993). Very often symptoms may be
caused by underlying diseases (e.g., depression), and it can be difficult to
distinguish between different diseases. Fatigue as the most common symptom may
be present in many other situations (including healthy control groups within clinical
studies). Hepatitis C is rarely incapacitating.

Aminotransferase levels can vary considerably over the natural history of chronic
hepatitis C. Most patients have only slight elevations of transaminases. Up to one
third of patients have a normal serum ALT (Martinot-Peignoux 2001, Puoti 2002).
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About 25% of patients have a serum ALT concentration of more than twice normal,
but usually less than 5 times above the upper limit of normal. Elevations of 10 times
the upper limit of normal are very seldomly seen.

There is a poor correlation between concentrations of aminotransferases and liver
histology. Even patients with normal serum ALT show histologic evidence of
chronic inflammation in the majority of cases (Mathurin 1998). The degree of injury
is typically minimal or mild in these patients. Accordingly, normalisation of
aminotransferases after interferon therapy does not necessarily reflect histologic
improvement.

Extrahepatic manifestations

Around 30 to 40% of patients with chronic hepatitis C have an extrahepatic
manifestation of HCV (Zignego 2008). There is a wide variety of extrahepatic
manifestations described as being associated with HCV:

Hematologic manifestations (essential mixed cryoglobulinemia, lymphoma)
Autoimmune disorders (thyroiditis, presence of various autoantibodies)
Renal disease (membranoproliferative glomerulonephritis)

Dermatologic disease (porphyria cutanea tarda, lichen planus)

Diabetes mellitus

For further details refer to Chapter 16.

Natural history

The risk of developing cirrhosis within 20 years is estimated to be around 10 to
20%, with some studies showing estimates up to 50% (Poynard 1997, Wiese 2000,
Sangiovanni 2006, de Ledinghen 2007). Due to the long course of hepatitis C the
exact risk is very difficult to determine, and figures are divergent for different
studies and populations. In fact, chronic hepatitis C is not necessarily progressive in
all affected patients. In several cohorts it has been shown that a substantial number
of patients will not develop cirrhosis over a given time. It is estimated that about
30% of patients will not develop cirrhosis for at least 50 years (Poynard 1997).

Therefore, studies with short observation periods sometimes fail to show an
increase in mortality. In addition, survival is generally not impaired until cirrhosis
has developed. On the other hand, there is no doubt that patients with chronic
hepatitis C have a high risk of cirrhosis, decompensation, and hepatocellular
carcinoma in long-term follow-up. For example, in a cohort of patients with post-
transfusion hepatitis C evaluated more than 20 years after transfusion 23% had
chronic active hepatitis, 51% cirrhosis, and 5% hepatocellular carcinoma (Tong
1995). It is not completely understood why there are such differences in disease
progression. An influence of host and viral factors has to be assumed.

Cirrhosis and hepatic decompensation

Complications of hepatitis C occur almost exclusively in patients who have
developed cirrhosis. Interestingly, non-liver related mortality is higher in cirrhotic
patients as well. However, cirrhosis may be very difficult to diagnose clinically, as
most cirrhotic patients will be asymptomatic as long as hepatic decompensation
does not occur. Findings that can be associated with cirrhosis are hepatomegaly
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and/or splenomegaly on physical examination, elevated serum bilirubin
concentration, hyperalbuminemia, or low platelets. Other clinical findings
associated with chronic liver disease may be found such as spider angiomata, caput
medusae, palmar erythema, testicular atrophy, or gynaecomastia. Most of these
findings are found in less than half of cirrhotic patients, and therefore none is
sufficient to establish a diagnosis of cirrhosis.

Hepatic decompensation can occur in several forms. Most common is ascites,
followed by variceal bleeding, encephalopathy and jaundice. As mentioned earlier,
hepatic decompensation will develop only in cirrhotic patients. However, not all
patients with cirrhosis actually show signs of decompensation over time. The risk
for decompensation is estimated to be close to 5% per year in cirrhotics (Poynard
1997). Once decompensation has developed the 5-year survival rate is roughly 50%
(Planas 2004). For this group of patients liver transplantation is the only effective
therapy.

Similar to decompensation, hepatocellular carcinoma (HCC) develops solely in
patients with cirrhosis (in contrast to chronic hepatitis B). The risk for HCC has
been estimated to be less than 3% per year once cirrhosis has developed (Di
Bisceglie 1997, Fattovich 1997). However, HCV-associated HCC has significant
impact on survival (see Chapter 21).

Elevated concentrations of a-fetoprotein (AFP) do not necessarily indicate HCC.
AFP may be mildly elevated in chronic HCV infection (i.e., 10 to 100 ng/mL).
Levels above 400 ng/mL as well as a continuous rise in AFP over time are
suggestive of HCC.

Disease progression

Chronic hepatitis C has different courses among individuals. It is not completely
understood why there are differences in disease progression. Several factors have
been identified that may be associated with such differences. However, other factors
not yet identified may also be important.

Age and gender: Acquisition of HCV infection after the age of 40 to 55 may be
associated with a more rapid progression of liver injury, as well as male gender
(Svirtlih 2007). On the contrary, children appear to have a relatively low risk of
disease progression (Child 1964). In one cohort, for example, only 1 of 37 patients
with HCV RNA in serum had elevated levels of serum aminotransferases, and only
3 of 17 (18%) who had liver biopsies approximately 20 years after exposure had
histologic signs of progressive liver disease.

Ethnic background: Disease progression appears to be slower and changes in
liver histology less severe in African-Americans (Sterling 2004).

HCV-specific cellular immune response: The severity of liver injury is
influenced by the cellular immune response to HCV-specific targets. Inflammatory
responses are regulated by complex mechanisms and probably depend on genetic
determinants such as HLA expression (Hraber 2007). Whether this determines
progression of liver disease is not clear.

Alcohol intake: Alcohol increases HCV replication, enhances the progression of
chronic HCV, and accelerates liver injury (Gitto 2009). Even moderate amounts of
alcohol appear to increase the risk of fibrosis. Accordingly, in alcoholic patients
with cirrhosis and liver failure a high prevalence of anti-HCV antibodies has been
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described. Alcohol intake should be avoided in all patients with chronic hepatitis C.
There is no clear amount of safe alcohol intake.

Daily use of marijuana: Daily use of marijuana has been associated with more
rapid fibrosis progression, possibly through stimulation of endogenous hepatic
cannabinoid receptors.

Other host factors: Genetic polymorphisms of certain genes might influence the
fibrosis progression rate (Jonsson 2008). For example, transforming growth factor
B1 (TGF B1) phenotype or PNPLAS3 (adiponutrin) are correlated with fibrosis stage
(Zimmer 2011). Patients with moderate to severe steatosis are at higher risk for
developing hepatic fibrosis.

Viral coinfection: Progression of hepatitis C clearly is accelerated in HIV-
infected patients (see section on coinfection). Acute hepatitis B in a patient with
chronic hepatitis C may be more severe. Chronic hepatitis B may be associated with
decreased HCV replication as opposed to HCV monoinfected patients, although
HCV usually predominates. Nevertheless, liver damage is usually worse and
progression faster in patients with dual HBV/HCV infections. Around one third of
patients coinfected with HBV and HCV lack markers of HBV infection (i.e.,
HBsAg) although HBV DNA is detectable.

Geography and environmental factors: There are some obvious geographic
differences (Lim 2008). For example, hepatocellular carcinoma is observed more
often in Japan than in the United States. The reason for this is not clear.

Use of steroids: It is well known that use of steroids increases the HCV viral
load, while the effect on aminotransferases is variable. They tend to decrease in
most patients, although increases in transaminases and bilirubin have also been
described. Reducing dosage of corticosteroids returns HCV viral load to baseline.
However, the clinical consequences of corticosteroid use are largely unknown. It
seems to be reasonable to assume that short-term use of corticosteroids is not
associated with significant changes in long-term prognosis.

Viral factors: The influence of viral factors on disease progression is unclear.
Overall, there seems to be no significant role of different genotypes and
quasispecies on fibrosis progression or outcome. However, coinfection with several
genotypes may have a worse outcome as compared to monoinfection.

It is very difficult to predict the individual course of hepatitis C due to the many
factors influencing disease progression. Today, assessment of liver fibrosis by non-
invasive techniques such as transient elastography, AFRI or by liver biopsy is the
best predictor of disease progression (Gebo 2002). The grade of inflammation and
stage of fibrosis are useful in predicting further clinical course. In patients with
severe inflammation or bridging fibrosis virtually all patients will develop cirrhosis
within ten years. In contrast, patients with mild inflammation and no fibrosis have
an annual progression risk to cirrhosis of around 1%.

Several predictive models of disease progression that include clinical parameters
(e.g., hepatic decompensation) and laboratory parameters (e.g., bilirubin, INR) have
been evaluated, but none of these models is routinely used in the clinic at present. In
patients with cirrhosis, the MELD score (Model for End-Stage Liver Disease) and
the Child score (Table 1) are used to stage disease and to describe the prognosis (see
Chapters 22 & 23). The MELD Score is used especially to estimate relative disease
severity and likely survival of patients awaiting liver transplant. It is calculated as:
MELD Score = 10 x ((0.957 x In(Creatinine)) + (0.378 x In(Bilirubin)) + (1.12 x
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In(INR))) + 6.43. An online calculator and further information can be found at the
website of The United Network for Organ Sharing (UNOS) (http://www.unos.org).

Table 1. Child-Pugh classification of severity of liver disease (Child 1964).*

Points assigned

1 2 3

Ascites Absent Slight Moderate
Bilirubin, mg/dL <2 2-3 >3
Albumin, g/dL >3.5 2.8-3.5 <2.8
Prothrombin time

Seconds over control <4 4-6 >6

INR <17 1.7-2.3 >2.3
Encephalopathy None Grade 1-2 Grade 3-4

* A total score of 5-6 is considered stage A (well-compensated disease); 7-9 is stage B
(significant functional compromise); and 10-15 is stage C (decompensated disease). These

grades cOrrelate with one- and two-year patient survival (stage A: 100 and 85 percent; stage B:
80 and 60 percent; stage C: 45 and 35 percent).
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4. Hepatitis E: an underestimated problem?

Sven Pischke and Heiner Wedemeyer

Introduction

Hepatitis E is an inflammatory liver disease caused by the hepatitis E virus (HEV),
which is endemic in many tropical countries. Hepatitis E has been considered to be
a travel-associated, acute, self-limiting liver disease that only causes fulminant
hepatic failure in specific, high-risk groups. It has recently been estimated that HEV
infection causes approximately 70,000 deaths each year worldwide (Rein 2011). In
recent years sporadic cases of HEV infections have emerged also in industrialized
countries, mostly caused by HEV genotype 3, for which zoonotic transmission has
been described (Pischke 2010b).

In immunocompetent individuals infection with HEV usually leads to a clinically
silent seroconversion or to an acute self-limited inflammation of the liver. In
pregnant women and patients with pre-existing chronic liver diseases cases of
fulminant liver failure by HEV infection are reported (Pischke 2010b).

Moreover, cases of chronic HEV infection associated with progressive liver
disease have been described in several cohorts of immunocompromised individuals.
In this context, diagnosis of HEV infection should rely on detection of HEV RNA,
as testing for HEV-specific antibodies may lack sensitivity (Pischke 2010c).

Therapeutic options for chronic hepatitis E include reduction of
immunosuppressive medication (Kamar 2011a), treatment with o-interferon
(Haagsma 2010, Kamar 2010a) or therapy with ribavirin (Kamar 2010b, Mallet
2010).

Recently, results of a large Phase 1l study were presented investigating a novel
recombinant HEV vaccine in China. The vaccine had an efficacy to prevent acute
symptomatic hepatitis E of >90% (Zhu 2010). It is unknown yet if and when this
vaccine might become available for other countries.

HEV: genetic characteristics of the virus

The hepatitis E virus is a non-enveloped, single-stranded RNA virus classified into
the family of Hepeviridae and its own genus Hepevirus (Pischke and Wedemeyer
2010). There are 5 known genotypes. The HEV genome includes two short non-
coding regions surrounding three open reading frames (ORF1 to 3). These ORFs
contain the genetic information for various proteins that are necessary for capsid
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formation, virus replication and infectivity of HEV. Various HEV isolates have
been differentiated by phylogenetic analysis based on a hypervariable region within
ORF1 (Meng 1999). Four of five HEV genotypes are able to infect humans, while
genotype 5, called “avian HEV”, has only been detected in birds.

HEV genotype 1 is responsible for endemic and epidemic infections by HEV in
Asia, while genotype 2 is endemic in Africa and Mexico (Figure 1). These
genotypes are usually transmitted orally-faecally by contaminated drinking water
under conditions of poor sanitation. There is no known animal reservoir for these
genotypes (Pischke 2010b).

HEV genotype 3 can be found in humans and animals in Europe, the US and Asia
(Pischke 2010b). For this genotype zoonotic transmission, foodborne or by contact
with infected animals has been described. HEV genotype 3 has been identified in
pigs, wild boars, shellfish, deer, oysters, cats, rats and various rodents (Pischke
2010b). Genotype 4 has also been detected in both humans and pigs in Asia (Geng
2009) and Europe (Hakze-van der Honing 2011).

Foodborne transmission can be avoided by cooking meat above 60°C, which
inactivates the virus (Emerson 2005).
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Figure 1. Worldwide distribution of HEV genotypes.

Diagnosis of hepatitis E

In immmunocompetent patients the diagnosis of hepatitis E is based on the
detection of HEV-specific antibodies. While IgG antibodies indicate acute and past
HEV infections, IgM antibodies can only be found in patients with acute infections
(Pischke and Wedemeyer 2010). There are different commercial assays available for
detection of HEV-specific antibodies. Comparison of six of these assays revealed a
wide variation of diagnostic sensitivities and specificities as well as interassay
disagreements (Drobeniuc 2010). Thus, some of the remarkable discrepancies in
HEV seroprevalence rates reported in different studies may be explained by varying
sensitivities of the respective assays.

HEV-specific 1gG antibodies can be detected in patients with previous contact
with HEV. They do not differentiate between ongoing HEV infection and past
contact with the virus. To prove current infection the detection of HEV RNA by
PCR has been established. Numerous assays using different primers have been
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developed (Meng 1999, Zhao 2007). Furthermore, few quantitative PCR assays
have been described (Ahn 2006, Enouf 2006).

In immunocompromised individuals, diagnosis of HEV infection may only be
based on the detection of HEV RNA as seroassays lack sensitivity especially in the
early phase of infection (Pischke 2010c). HEV RNA can not only be detected in
serum samples but also in stool (Pischke 2010b) and thus infectivity of HEV
infected persons can be determined by investigating stool for HEV RNA.

Worldwide distribution of HEV infections

In the last few years an increasing frequency of diagnosed cases of HEV infections
has been reported from various industrialised countries (Pischke 2010b). The
presence of HEV RNA in urban sewage samples from Spain, the US and France has
been shown, suggesting that HEV may be more prevalent in industrialised countries
than previously assumed (Clemente-Casares 2003). In each of these three countries
it was possible to discover HEV contamination in sewage samples in a notably high
frequency. These findings may partially explain the huge gap between
seroprevalence rates and the rather low numbers of diagnosed and reported cases of
acute hepatitis E in Western countries. For example, Germany has a seroprevalence
rate of 2% in a population of 80 million individuals (representing 1.6 million
persons with possible previous HEV infection) but only about 200 cases of hepatitis
E are diagnosed and reported each year (Pischke 201l1a, Pischke 2010b). The
mismatch between high seroprevalence rates and the low number of symptomatic
cases has also been investigated in a recent study from Egypt. 919 anti-HEV
seronegative individuals from rural Egypt were followed and, interestingly, 3.7%
(n=34) of these individuals seroconverted to anti-HEV within 11 months of follow
up (Stoszek 2006). However, none of these 34 individuals suffered from
symptomatic hepatitis E. This finding corresponds with data from a recently
published large vaccine study performed in China where very few of the patients in
the placebo group who seroconverted during a follow-up period developed
symptomatic acute hepatitis E (Zhu 2010). Overall, these data suggest that far less
than 5% of all contacts with HEV lead to symptomatic hepatitis E (Wedemeyer and
Pischke 2011).

Even so, a rapid increase in reported HEV infections has been recognized in
several industrialized countries over the last 10 years. To investigate the potential
underlying reasons for this phenomenon, we analyzed the time trend of the anti-
HEV seroprevalence in healthy German individuals versus the number of reported
cases of acute hepatitis E. Even though the number of reported cases increased more
than 5-fold over the last ten years (Figure 1), the anti-HEV IgG seroprevalence rate
remained rather stable over the last 15 years (Pischke 2011a). In contrast, the
number of scientific articles on HEV infections published in PubMed increased
sharply during the same period (Figure 1). These findings could indicate that the
increase of reported HEV cases in Germany and other industrialized countries is
based on an increased awareness associated with more frequent diagnosis of
hepatitis E but not a true increase in incidence rates (Pischke 2011a).
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Figure 2. Number of reported HEV infections in Germany over the last decade (Figure 2a)
and number of publications on HEV over the same time period (Figure 2b).

Transmission of HEV

The vast majority of HEV infections worldwide happens via the faecal-oral route
(Figure 2). Patient-to-patient transmission is very rare but has been described from a
large outbreak in Northern Uganda (Teshale 2011) and from hematology wards in
Europe (Pischke 2010b). Bloodborne transmission of HEV has been suggested in
the late nineties (Fainboim 1999). Subsequent studies from Hong Kong, Japan,
Great Britain and France confirmed blood transfusions as a possible source of HEV
transmission  (Pischke 2010b). A single case of HEV transmission by
transplantation of a liver graft from a patient with occult hepatitis E has been
reported (Schlosser 2011).

Zoonotic transmission of HEV has recently been assumed to be the main source
of HEV infections in industrialized countries (Figure 3). Both direct contact with
HEV-infected domestic animals and foodborne transmission are possible (Pischke
2010b). Commercial food products such as pig meat may be contaminated with
HEV as shown in studies from the Netherlands, France and Germany (Colson 2010,
Melenhorst 2007, Wenzel 2011). Meat should be heated to over 70°C to prevent
foodborne HEV infections (Emerson 2005).
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Figure 3. Possible sources of HEV infection.

Acute hepatitis E in immunocompetent individuals

In the vast majority of cases, contact with HEV takes an asymptomatic course
(Stoszek 2006, Wedemeyer and Pischke 2011), especially if the contact happens
during childhood (Buti 2008). Immunocompetent individuals should be able to clear
the virus spontaneously. In symptomatic cases the incubation period of HEV
infections ranges from three to eight weeks with a mean of 40 days (Pischke 2010b).
The peak of HEV viremia can be detected in the early phase of infection while the
peak of ALT elevations usually occurs around 6 weeks after infection (Pischke
2010b).

Initial symptoms in acute hepatitis E are typically unspecific and can include flu-
like myalgia, arthralgia, weakness and vomiting. In some patients jaundice, itching,
uncoloured stool and darkened urine occur accompanied by elevation of liver
transaminases, bilirubin, alkaline phosphatase and gamma-glutamyltransferase.

HEV infection can lead to more severe acute liver disease in pregnant women or
patients with underlying chronic liver diseases progressing to fulminant hepatic
failure in individual cases (Pischke 2010b). Possible explanations for the severe
courses in pregnant women are hormonal and immunological changes during
pregnancy (Navaneethan 2008). Recently an association between reduced
expression of the progesterone receptor and fatal outcome of hepatitis E in pregnant
women has been reported (Bose 2011).

Single cases of prolonged courses of HEV infection in immunocompetent
individuals with up to two years of viremia have been described in the US (Mallet
2010), Spain (Gonzalez Tallon 2011) and China (Liu and Liu 2011). However, no
case of HEV-associated liver cirrhosis or development of hepatocellular carcinoma
has been reported in immunocompetent individuals.
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Acute and chronic HEV infections in organ
transplant recipients

Chronic courses of HEV infections have been described in European liver or kidney
transplant recipients since 2008 (Gerolami 2008, Haagsma 2009, Kamar 2008,
Pischke 2010c). 14 cases of acute hepatitis E were initially reported in kidney- and
liver-transplanted patients from southwest France (Kamar 2008). Eight of them
developed a chronic course leading to persistently elevated ALT levels, significant
histological activity and fibrosis after a follow-up of more than 12 months (range 10
to 18). Subsequently, additional cases of chronic HEV infections have been reported
in transplant patients by several groups (Pischke and Wedemeyer 2010), clearly
demonstrating that chronic hepatitis E can be associated with progressive liver
disease in patients after organ transplantation (Kamar 2011c).

A study from Germany examined 226 liver-transplanted patients and 129 patients
with chronic liver disease to evaluate the frequency of chronic HEV infections in
liver transplant recipients in a low endemic country (Pischke 2010c). All patients
were tested for HEV RNA and anti-HEV IgG. Two cases of chronic HEV infections
in liver transplanted patients were identified showing different courses. One of them
developed significant liver fibrosis (ISHAK F3) within less than 2 years. Both
patients were infected with HEV genotype 3. The possibility of reverse zoonotic
transmission was experimentally confirmed by infecting pigs with the patient’s
blood. HEV RNA was detectable in various organs of the pigs including muscle.
Thus, these findings further support the recommendations that eating uncooked
meat should be avoided by organ transplant recipients as this may represent a source
for acquiring HEV infection.

A recent study summarized retrospective data on hepatitis E in transplant
recipients in 17 centres. Overall, 85 cases of HEV infections were described and 56
(66%) patients developed chronic hepatitis E. Of note, chronicity was associated
with the use of tacrolimus and with low platelet count (Kamar 2011c). However it
has to be considered that the vast majority of patients had been recruited by one
center (Toulouse) and experiences from other regions and transplant centres need to
be reported.

Chronic courses of HEV infection have also been reported in heart transplant
recipients (de Man 2011, Pischke 2011b). Overall, all recipients of solid organ
transplant with elevated liver enzymes should be tested for HEV RNA unless other
obvious reasons already explain the hepatitis. In immunosuppressed patients testing
for HEV RNA should be applied as antibody testing may lack sensitivity.

Hepatitis E in patients with HIV infection

Chronic hepatitis E was described for the first time in a patient with underlying HIV
infection in 2009 (Dalton 2009). This patient had a CD4 T cell count of less than
200 cells and high HIV RNA levels (>100,000 copies/ml). However, subsequent
studies from Spain (n=93) (Madejon 2009), Germany (n=123) (Pischke 2010a) and
England (n=138) (Keane 2012) could not identify cases of chronic hepatitis in HIV-
infected individuals. HEV RNA was detected for more than 10 months in only one
out of 184 HIV-positive individuals in France (Kaba 2010). This patient had
particularly low CD4 counts (<50 cellss/mm) while two additional patients with
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higher CD4 levels were able to clear HEV spontaneously. Thus, persistent HEV
infection is rarely observed in HIV-infected patients and only subjects with strongly
impaired immune system seem to be at risk for chronic hepatitis E.

Extrahepatic manifestations of hepatitis E

There is some evidence that HEV infections maybe associated with extrahepatic
manifestations. One case report described muscular weakness and a pyramidal
syndrome in a kidney transplant recipient with persistent HEV infection (Kamar
2011b). Moreover, neurological disorders including polyradiculopathy, Guillain-
Barre syndrome, bilateral brachial neuritis, encephalitis or proximal myopathy, have
been reported in patients with acute and chronic HEV infections (Kamar 2011b).
The underlying mechanisms and the clinical relevance of this association require
further investigation.

Treatment of chronic hepatitis E

Treatment options for chronic hepatitis include reduction of immunosuppression,
administration of pegylated-interferon o with ribavirin. The first step in the
treatment of chronic HEV infection should be to evaluate if it is possible to reduce
the immunosuppressive medication (Pischke and Wedemeyer 2010). Reduction of
immunosupression in 16 solid organ transplant recipients with chronic hepatitis E
led to clearance of HEV in 4 cases (25%) (Kamar 2011a). A second possible
treatment option is the use of pegylated-interferon o (Haagsma 2010, Kamar
2010a). Treatment durations varied between 3 and 12 months. Overall, 4 out 5
patients were successfully treated with sustained clearance of HEV RNA. However,
the use of interferon can be associated with significant side effects and may cause
rejection in organ transplant recipients. Interferon a is therefore not recommended
in heart or kidney transplant recipients. The antiviral efficacy of ribavirin
monotherapy has been evaluated by two French groups (Kamar 2010b, Mallet
2010). A sustained virological response was observed in 2/2 and 4/6 treated
patients, respectively. Ribavirin has also been used in a not-transplanted patient with
severe acute hepatitis E who showed rapid improvement of symptoms and liver
function tests during treatment (Gerolami 2011).

Vaccination

No commercial HEV vaccine is currently available. A vaccine developed by GSK
and the Walter Reed Army Institute that was successfully tested in a Phase Il study
(Shrestha 2007). However, this vaccine has not been further developed. A group
from China reported data recently from a very large successful Phase Il vaccine
trial (Zhu 2010). This trial included almost 110,000 individuals who received either
a recombinant HEV vaccine (“HEV 239”) or placebo. The vaccine efficacy after
three doses was 100%. It is currently not known if and when this vaccine will
become available in China and other countries. Moreover, the efficacy of this
vaccine needs to be evaluated in special risks groups such as patients with end-stage
liver disease or immunosuppressed individuals. It is also unknown if HEV-239 also
protects from HEV genotype 3 infection (Wedemeyer and Pischke 2011).
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Conclusions/Recommendations

— The prevalence of chronic HEV infections in liver transplant recipients
depends on the general prevalence in the population and is low in most
industrialized countries. However, chronic hepatitis E occurs and needs to be
considered in the differential diagnosis of graft hepatitis as persistent HEV
infection can be associated with progressive graft hepatitis and the
development of liver cirrhosis. Currently all reported cases of chronic HEV
infections in transplant recipients are caused by HEV genotype 3. It is not
known if chronic hepatitis E can also be caused by the other genotypes.

— The diagnosis of HEV infection should not be based on serological assays
alone in organ transplant recipients as these assays may lack sensitivity.
Detection of HEV RNA by PCR in serum or stool represents the gold standard
to determine the diagnosis of HEV infection.

— Organ transplant recipients and other immunocompromised individuals should
avoid eating uncooked meats to avoid infection with HEV.

— Additional studies investigating the use of ribavirin for treatment of chronic
hepatitis E are necessary.

— The relevance of extrahepatic manifestations associated with acute or chronic
HEV infections needs further examination.
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5. HBV Virology

Maura Dandri, Jorg Petersen

Introduction

The human hepatitis B virus (HBV) is a small enveloped DNA virus causing acute
and chronic hepatitis. Although a safe and effective vaccine has been available for
the last two decades, HBV infection still represents a major global health burden,
with about 350 million people chronically infected worldwide and more than 1
million deaths per year due to HBV-associated liver pathologies (Block 2007).
Many epidemiological and molecular studies have shown that chronic HBV
infection represents the main risk factor for hepatocellular carcinoma development
(Shepard 2006, Lok 2004, Pollicino 2011). The rate for chronicity is approximately
5% in adult infections, but it reaches 90% in neonatal infections. HBV transmission
occurs vertically and horizontally via exchange of body fluids. In serum, up to 10"
HBV genome equivalents per ml serum can be found. Although HBV does not
induce direct cytopathic effects under normal infection conditions (Wieland 2004,
Thimme 2003), liver damage (fibrosis, cirrhosis, and eventually hepatocellular
carcinoma) is believed to be induced by the ongoing immune reaction and a
consistent inflammation of the liver (McMahon 2009, Chisari 2007).

HBV is the prototype member of the Hepadnaviridae family, which are the
smallest DNA-containing, enveloped animal viruses known. Characteristic of HBV
is its high tissue- and species-specificity, as well as a unique genomic organization
with asymmetric mechanism of replication (Nassal 2008). Since all hepadnaviruses
use a reverse transcriptase to replicate their genome, they are considered distantly
related to retroviruses. Despite decades of research and significant progresses in
understanding of the molecular virology of HBV, important steps of the infection,
such as the mechanism and cellular receptor(s) mediating viral entry, have not yet
been clarified (Glebe 2007). Only recently, innovative infection models and
molecular techniques have opened new possibilities to investigate specific steps of
the lifecycle, as well as the organization and the activity of the covalently closed
circular DNA (cccDNA), the viral minichromosome serving as the template of HBV
transcription in the nucleus of the infected hepatocytes, which enables maintenance
of chronic HBV infection (Levrero 2009).
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Taxonomic classification and genotypes

The Hepadnaviridae form their own taxonomic group, since their biological
characteristics are not observed in any other viral family. Based on host and
phylogenetic differences, the family of Hepadnaviridae contains two genera: the
orthohepadnaviruses infecting mammals, and the avihepadnaviruses that infect
birds. To date, orthohepadnaviruses have been found in human (HBV), woodchuck
(WHV) (Korba 1989), ground squirrel (GSHV), arctic squirrel (ASHV) and woolly
monkey (WMHBYV) (Lanford 1998). Avihepadnaviruses include duck HBV
(DHBV) (Mason 1980), heron HBV (HHBV) (Sprengel 1988), Ross’s goose HBV,
snow goose HBV (SGHBV), stork HBV (STHBV) (Pult 2001) and crane HBV
(CHBV) (Roggendorf 2007, Funk 2007, Dandri 2005b, Schaefer 2007).

Due to the lack of proofreading activity of the viral polymerase, misincorporation
of nucleotide mutations occurs during viral replication. This has led to the
emergence of eight HBV genotypes, A-H, which differ in more than 8% of the
genome, as well as different subgenotypes, which differ by at least 4% (Fung and
Lok 2004, Guirgis 2010). The HBV genotypes have different geographic
distribution (Liaw 2010), with predominance of genotype A in northwestern
Europe, North and South America, genotype B and C in Asia and genotype D in
eastern Europe and in the Mediterranean basin. The less diffuse remaining
genotypes are mostly found in West and South Africa (genotype E), in Central and
South America (genotypes F and H), while genotype G has been detected in France
and in the US (Pujol 2009). The phylogenetic tree of HBV genomes is reviewed
elsewhere (Schaefer 2007)

HBYV structure and genomic organization

Three types of viral particles can be visualized in the infectious serum by electron
microscopy: the infectious virions and the subviral particles (SVPs). The infectious
virus particles are the so-called Dane particles (Dane 1970), have a spherical,
double-shelled structure of 42-44 nm containing a single copy of the viral DNA
genome, covalently linked to the terminal protein of the virus. A hallmark of HBV
infection is the presence of two additional types of particles, the spheres and the
filaments, which are exclusively composed of hepatitis B surface proteins and host-
derived lipids (Glebe and Urban 2007). Since they do not contain viral nucleic
acids, the subviral particles are non-infectious. The spherical structures measure
around 22 nm in diameter, while the filaments are similarly width, but display
variable lengths (Figure 1).

The viral membrane contains three viral surface proteins and is acquired by the
virus during budding into the endoplasmic reticulum (ER), whereas the viral
particles are transported via the secretory pathways through the ER and Golgi. The
surface proteins are named, according to their size, the preS1 (or large), the preS2
(or middle) and the S (or small), which corresponds to the HBsAg. As with nearly
all enveloped viruses, the HBV particle also contains proteins of host origin (Glebe
2007, Urban 2010).

The HBV genome consists of a partially double-stranded relaxed circular DNA of
approximately 3200 nucleotides in length, varying slightly from genotype to
genotype, that in concert with the core protein (HBcAg) forms the nucleocapsids
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(Nassal 2008). Within the Dane particle the negative strand of the viral DNA is
present in full-length, thus carrying the complete genetic information. In contrast,
the positive strand spans only ~ 2/3 of the genome in length, whilst its 3’ end is
variable in size (Summers 1988, Lutwick 1977). The viral polymerase is covalently
bound to the negative strand by a phosphotyrosine bond. At the 5° end of the
positive strand a short RNA oligomer originating from the pre-genomic (pg) RNA
residually remains bound covalently after the viral DNA synthesis. The negative
strand also contains a small redundancy of 8-9 nuclectides in length on both the 5’
end and the 3’ end, named the R region. These redundant structures are essential for
viral replication (Seeger 1986, Seeger 2000, Nassal 2008, Lee 2004).

HBV virion Subviral particles
“Dane

P
particle” _—

/ Filaments Spheres
(length variable)

Figure 1. Schematic representation of the HBV virion and non-infectious empty
subviral particles (filaments and spheres). Within the nucleocapsid (HBcAg, shown in
black) is depicted the partial double-stranded viral genome (rcDNA) covalently linked to
the terminal protein of reverse transcriptase. The presence and distribution of the three
surface proteins L (preS1 or large), M (preS2 or middle) and S (small) are shown both on
HBV and subviral particles (adapted from Glebe 2007).

The HBV genome displays four major open reading frames (ORFs) that are
organized in a unique and highly condensed way (Block 2007). As shown in Figure
2, all ORFs are in an identical orientation, partially overlap and are encoded by the
negative strand. On the genome, 6 start codons, four promoters and two
transcription-enhancing elements have been identified. The four major ORFs are: 1)
the preS/S, encoding the three viral surface proteins; Il) the precore/core, encoding
both the core protein, essential for the formation of the nucleocapsid, and the non-
structural pre-core protein, also known as the secreted e-antigen (HBeAg); IlI) the
pol ORF of the viral polymerase, which possesses reverse transcriptase, DNA
polymerase and RNase H activities, and the terminal protein; and 1V) the X ORF,
coding for the small regulatory X protein, which has been shown to be essential in
vivo for viral replication (Zoulim 1994, Lucifora 2011) and is capable of
transactivating numerous cellular and viral genes. Characteristic of the 4 major
HBV ORFs is that they utilize a single common polyadenylation signal motif
(Nassal 2008). Thus, all RNA transcripts are polyadenylated and capped.
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Figure 2. Genome organization and transcripts of the human hepatitis B virus. The
outer thin lines represent the viral transcripts that initiate at different sites, under the
control of distinct promoters, but are all terminated after a common polyadenylation site.
The RNA signal on the terminally redundant pgRNA is indicated as a hairpin. The thick
lines represent the rcDNA form of the genome as present in infectious virions. The 5’ end
of the minus-strand DNA is covalently linked to the terminal protein of the polymerase.
The 5° end of the incomplete plus-strand DNA is constituted by an RNA oligo derived from
the 5’ end of pgRNA. DR1 and DR2 indicate the direct repeats. The inner arrows indicate
the open reading frames (adapted from Nassal 2008).

HBYV structural and non-structural proteins

The three surface proteins (L, M, and S) are encoded from one open reading frame
(PreS/S) which contains three start codons (one for the large, one for the middle and
one for the small protein) but promotes the transcription of 2 mRNAs of 2.4 and 2.1
Kb, named preS and S RNAs (Glebe 2007). Notably, the preS/S ORF entirely
overlaps with the polymerase open reading frame (Lee 2004). The three HBV
envelope proteins share the C-terminal domain of the S-protein, while the M- and L-
protein display progressive N-terminal extensions of 55 and, genotype-dependent,
107 or 118 amino acids (preS2 and preS1). The small envelope protein contains the
hepatitis B surface antigen (HBsSAg). In virions the stoichiometric ratio of L, M and
S is about 1:1:4, while the more abundantly secreted non-infectious subviral
particles (SVPs) contain only traces of L-protein (Bruss 2007). The envelope
proteins are cotranslationally inserted into the ER membrane, where they aggregate,
bud into the ER lumen, and are secreted by the cell, either as 22 nm subviral
envelope particles (SVPs) or as 42 nm infectious virions (Dane particles), after
having enveloped the DNA-containing nucleocapsids. The surface proteins of
mammalian Hepadnaviridae have been shown to be N- and O-glycosylated
(Schildgen 2004, Schmitt 2004). These glycosylations have been shown to be
responsible for proper secretion of progeny viral particles. During synthesis, the
preS1 domain of L is myristoylated and translocated through the ER. This
modification and the integrity of the first 77 amino acids of preS1 have been shown
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to be essential for infectivity (Glebe 2005, Nassal 2008) (Schulze 2010). Both
spherical and filamentous SVPs are secreted into the blood of infected individuals in
a 10%-10°-fold excess relative to the infectious particles. The biological function of
the excess of SVPs in patients is not clear. It was suggested that SVPs might absorb
the neutralizing antibodies produced by the host and hence increase the ability of the
infectious particles to reach the hepatocytes. It has also been suggested that SVPs
contribute to create a state of immune tolerance, which is a precondition for highly
productive persistent infection.

In the cytoplasm, the core protein dimerises and self-assembles to form an
icosahedral nucleocapsid. The full-length core protein is 183 amino acids in length
and consists of an assembly domain and a nucleic acid-binding domain, which plays
an active role in binding and packaging of the pregenomic RNA together with the
viral polymerase, and thus enables the RT-polymerase/RNA complex to initiate
reverse transcription within the newly forming nucleocapsids (Kann 1994, Kann
2007, Kann 1999, Daub 2002). The core protein can be phosphorylated by several
kinases. This step along with the presence of the viral polymerase is important for
the specific packaging of the pgRNA (Kann 1999, Porterfield 2010).

The viral polymerase is the single enzyme encoded by the HBV genome and is an
RNA-dependent DNA polymerase with RNase H activity. The HBV polymerase
consists of three functional domains and a so-called spacer region; the terminal
protein (TP) is located at its N-terminal domain, and serves as a primer for reverse
transcription of the pgRNA into a negative-strand DNA (Zoulim 1994, Nassal
2008). The spacer domain separates the terminal protein from the polymerase
domains (Beck 2007)

Despite the occurrence of nucleotide mutations due to the lack of proofreading
capacity of the HBV polymerase, the peculiar genomic organization of HBV, where
most of the genes overlap, imposes stronger constraints on the amino acid sequence,
which significantly reduces the occurrence of mutations in the absence of strong
selective pressures. Nevertheless, it has been shown that antiviral therapy with
nucleoside analogs can promote the selection of nucleotide mutations within
conserved domains of the reverse transcriptase, which lead to mutations also on the
amino acid sequence of the envelope proteins. Changes on the HBsAg structure may
lead to reduced binding of anti-HBs antibodies, and hence, they may favour the
selection of antibody escape mutants (Harrison 2006).

HBYV also produces distinct non-structural proteins whose exact functions are not
fully elucidated. Besides the production of large amounts of empty SVPs, HBV
produces and secretes a non-particulate form of the nucleoprotein, the precore
protein, or HBeAg, which is not required for viral infection or replication, but
appears to act as a decoy for the immune system, and hence, has tolerogenic
functions in promoting viral persistence in the neonates of viremic mothers (Chen
2005, Visvanathan 2006). The precore and core proteins are translated from 2
distinct RNA species that have different 5 initiation sites: the precore RNA and the
pgRNA. Indeed, the precore transcript, which also contains the full core gene,
encodes a signal sequence that directs the precore protein to the lumen of the
endoplasmic reticulum, where it is post-translationally processed. Here, the precore
protein undergoes N- and C-terminal cleavage to produce the mature HBeAg form
(p17), which is then secreted as a monomeric protein. Interestingly, 20 to 30% of
the mature protein is retained in the cytoplasm, where it may antagonise TLR
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signaling pathways and so contribute to the suppression of the host innate immune
responses (Lang 2011). As an important marker for active viral replication, the
HBeAg is widely used in molecular diagnostics (Chen 2005, Hadziyannis 2006).

The X protein is a multifunctional regulatory protein with transactivating and pro-
apoptotic potential, which can modify several cellular pathways (Bouchard 2004)
and act as a carcinogenic cofactor (Kim 1991, Dandri 1996, Slagle 1996).
Numerous DNA transfection experiments have shown that over-expression of the X
protein (HBXx) causes transactivation of a wide range of viral elements and cellular
promoters (Bouchard 2004). The evidence that HBx responsive enhancers/
promoters do not share any common DNA sequence and that HBx does not bind
double-stranded DNA suggested that HBx may exert its transactivating activity
through protein-protein interactions. In vitro studies have shown that HBx can affect
various cytoplasmic signal transduction pathways by activating the Src kinase,
Ras/Raf/MAP kinase, members of the protein kinase C, as well as Jak1/STAT.
Furthermore, in vitro binding studies show that HBx can regulate the proteasome
function, and thus, may control the degradation of cellular and viral proteins (Zhang
2004). It has also been reported that HBx can affect mitochondria function, by
altering its transmembrane potential, as well as that HBx can modulate calcium
homeostasis (Bouchard 2001, Nassal 2008, Yang 2011).

Although the exact role of HBx in the context of HBV infection has not been
clarified, several lines of evidence obtained first using the woodchuck model
(Zoulim 1994) and more recently using uPA/SCID mice (Tsuge 2010) and
HepaRG™ cells (Lucifora 2011), have convincingly shown that HBx is required to
initiate HBV replication and to maintain virion productivity. Notably, these studies
indicated that despite the establishment of comparable cccDNA amounts,
transcription of HBV RNAs was dramatically impaired in cells inoculated with
HBV X, indicating that HBx is essential for viral transcription. These findings are
also in agreement with data showing that HBx is recruited to the cccDNA
minichromosome, where it appears to be involved in epigenetic control of HBV
replication (Belloni 2009, Levrero 2009). In addition, HBx has been shown to
enhance encapsidation of the pgRNA by increasing phosphorylation of the core
protein (Melegari 2005), indicating that HBx may support virion productivity in
various steps of the HBV life cycle.

Most HBV-related HCC show the integration of HBV DNA sequences including
the X gene (Brechot 2004, Pollicino 2011, Lupberger 2007). Although HBV
integrated forms are frequently rearranged and hence not compatible with the
expression of functional proteins, HBx sequences deleted in the C-terminal portion
have been frequently detected in tumoral cells (lavarone 2003). In virus-associated
cancers, viral proteins have been shown to participate in epigenetic alterations by
disturbing the host DNA methylation system. Interestingly, a study suggested that
the HBV regulatory X protein is a potent epigenetic modifying factor in the human
liver, which can modulate the transcription of DNA methyltransferases required for
normal levels of genomic methylation and maintenance of hypomethylation of
tumor suppressor genes (TSGs) (Park 2007). HBx-promoted hypermethylation of
TSGs suggests a novel mechanism by which this promiscuous transactivating
protein may accelerate hepatocarcinogenesis (Kekule 1993, Dandri 1996).
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The HBV replication cycle

During the last 30 years, the generation of various HBV-transfected human
hepatoma cell lines and the use of related HBV viruses, like the duck hepatitis B
virus (DHBV) and the woodchuck hepatitis virus (WHV) have significantly
contributed to elucidate many steps of the hepadnavirus replication cycle (Schultz
2004, Roggendorf 1995, Roggendorf 2007). Nevertheless, the lack of efficient in
vitro infection systems and of easily accessible animal models has significantly
hindered the identification of mechanisms and cellular factors mediating viral entry
and uncoating in human hepatocytes. Although primary hepatocytes remain
permissive in vitro for only a short time after plating, the availability of primary
hepatocytes from tree-shrews (Tupaia belangeri) for infection studies with HBV
and the closely-related woolly monkey hepatitis B virus (WM-HBV) (Kock 2001),
and the discovery of a human hepatoma cell line (HepaRG) able to gain
susceptibility for HBV infection upon induction of differentiation in vitro (Gripon
2002), have lately expanded our possibilities to functionally dissect the HBV entry
process (Glebe 2007, Schulze 2010).

The first step in HBV infection appears to involve a non-cell-type specific
primary attachment to the cell-associated heparan sulfate proteoglycans (Schulze
2007). This first reversible attachment step is then followed by an irreversible
binding of the virus to a specific, but still unknown hepatocyte-specific receptor
(Urban 2010, Glebe 2007). This step probably requires activation of the virus,
resulting in exposure of the myristoylated N-terminus of the L-protein. Important
determinants for infectivity within the HBV envelope proteins were identified using
mutational analyses. These include 75 amino acids of the preS1 domain of the HBV
L-protein, its myristoylation and the integrity of a region in the antigenic loop of the
S domain (Gripon 2005, Engelke 2006). Potential HBV receptor candidates have
been described in the past, but none of them has been confirmed in a functional
assay (Glebe 2007). Recent studies indicated that cell polarization, in addition to the
differentiation status of the hepatocytes, plays an important role in the infection
process (Schulze 2011).

Upon binding to the cell membrane, two possible entry pathways have been
proposed. Experimental evidence suggests that HBV can be either involved in an
endocytosis process, followed by the release of the nucleocapsid from endocytic
vesicles, or HBV may enter the hepatocytes after fusion of the viral envelope at the
plasma membrane. As soon as the viral nucleocapsids are released into the
cytoplasm, the viral relaxed circular partially double stranded DNA (rcDNA) with
its covalently linked polymerase needs to enter the cell nucleus in order to convert
the rcDNA genome into a covalently closed circular form (cccDNA) (Nassal 2008).
Previous studies indicated that the viral capsids are transported via microtubules to
the nuclear periphery (Rabe 2006). The accumulation of the capsids at the nuclear
envelope would then facilitate interactions with nuclear transport receptors and
adaptor proteins of the nuclear pore complex (Kann 2007). Although immature
capsids may remain trapped within the nuclear baskets by the pore complexes, the
mature capsids eventually disintegrate, permitting the release of both core capsid
subunits and of the polymerase-viral DNA complexes, which diffuse into the
nucleoplasm (Schmitz 2010).
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Within the infected nuclei the establishment of productive HBV infection requires
the removal of the covalently attached viral polymerase and completion of the
positive-strand by the cellular replicative machinery to form the supercoiled
cccDNA molecule, which is then incorporated into the host chromatin and serves as
the template of viral transcription and replication (Nassal 2008, Newbold 1995). For
the formation of the cccDNA, the terminal protein and one of the redundant
terminal repeats present on the rcDNA need to be removed. So far it is assumed that
cellular ligases and probably other enzymes involved in DNA repair mechanisms
become active and convey the relaxed circular form into the cccDNA (Seeger
2000). Unlike the provirus DNA of retroviruses, the cccDNA does not need to be
incorporated into the host genome. Nevertheless, integrations of HBV DNA
sequences do occur, particularly in the course of hepatocyte turnover and in the
presence of DNA damage, as has been shown in cell culture (Dandri 2002) and in
the woodchuck system (Petersen 1998, Summers 2004, Mason 2005).

Disguised as a stable non-integrated minichromosome (Bock 1994, Bock 2001),
the cccDNA utilizes the cellular transcriptional machinery to produce all viral
RNAs necessary for protein production and viral replication, which takes place in
the cytoplasm after reverse transcription of an over-length pregenomic RNA
(pgRNA) (Figure 3).
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Figure 3. The HBYV lifecycle. Upon hepatocyte infection the nucleocapsid is released into
the cytoplasm and the rcDNA transferred to the cell nucleus where it is converted into the
cccDNA minichromosome. After transcription of the viral RNAs, the pgRNA is
encapsidated and reverse-transcribed by the HBV polymerase. Through Golgi and ER
apparatus the core particles acquire the envelope and are secreted. Via viral entry and
retransporting of the newly synthesized HBV DNA into the cell nucleus, the cccDNA pool
can be amplified.

Experimental DHBV infection studies indicate that the cccDNA can be formed
not only from incoming virions, but also from newly synthesized nucleocapsids,
which instead of being enveloped and secreted into the blood, are rather transported
into the nucleus to ensure accumulation, and later maintenance, of the cccDNA pool
(Zoulim 2005b, Nassal 2008). According to this scenario, multiple rounds of
infection are not needed to establish a cccDNA pool in infected duck hepatocytes.
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Moreover, expression of the DHBV viral large surface (LS) protein was shown to
induce a negative-feedback mechanism, whereby the accumulation of the LS protein
would be fundamental to shut off the cccDNA amplification pathway and redirect
the newly synthesized rcDNA-containing nucleocapsids to envelopment and
extracellular secretion (Kock 2010). Although this peculiar nuclear reentry
mechanism has been clearly demonstrated for the duck HBV (Summers 1991,
Nassal 2008, Wu 1990) and a high copy number of cccDNA molecules is generally
detected in chronically infected ducks and woodchucks (1 to 50 copies/cell) (Zhang
2003, Dandri 2000), lower cccDNA intrahepatic loads are generally determined in
human liver biopsies obtained from chronically HBV -infected patients (median 0.1
to 1 cccDNA copy/cell) (Werle-Lapostolle 2004, Wong 2004, Laras 2006, Volz
2007, Wursthorn 2006, Lutgehetmann 2008) and in chronically HBV-infected
human-liver chimeric uPA/SCID mice (Petersen 2008, Lutgehetmann 2011a,
Lutgehetmann 2011b, Lutgehetmann 2010), suggesting that different viral and host
mechanisms may control cccDNA dynamics and cccDNA pool size in human
infected hepatocytes (Levrero 2009). A recent study elegantly showed that HBV
converted the rcDNA into cccDNA less efficiently than DHBV in the same human
cell background (Kock 2010).

Although the formation of the cccDNA minichromosome is essential to establish
productive infection, recent studies performed in uPA/SCID mice indicate that this
step is achieved, initially, only in a minority of human hepatocytes. Indeed, three
weeks post-infection, the intrahepatic cccDNA load is very low (ca. 1 copy/50
human hepatocytes) and only sporadic cells stain HBcAg-positive, while within 8
weeks the majority of human hepatocytes become infected. Thus, several weeks
appear to be necessary for HBV to spread among human hepatocytes in vivo, even
in the absence of adaptive immune responses (Dandri 2011).

HBV polymerase inhibitors do not directly affect cccDNA activity and various in
vitro and in vivo studies support the notion that the cccDNA minichromosome is
very stable in quiescent hepatocytes (Moraleda 1997, Dandri 2000, Dandri 2005,
Lutgehetmann 2010). Thus, the significant decrease in cccDNA levels
(approximately 1 log,, reduction) generally determined after 1 year of therapy with
polymerase inhibitors (Werle-Lapostolle 2004) is imagined to derive from the lack
of sufficient recycling of viral nucleocapsids to the nucleus, due to the strong
inhibition of viral DNA synthesis in the cytoplasm, and less incoming viruses from
the blood. Nevertheless, cccDNA depletion is expected to require many years of
nucleos(t)ide drug administration. Thus, despite the absence of detectable viremia,
the persistence of the cccDNA minichromosome within the infected liver is
responsible for the failure of viral clearance and the relapse of viral activity after
cessation of antiviral therapy with polymerase inhibitors in chronically infected
individuals. Furthermore, if viral suppression is not complete, the selection of
resistant variants escaping antiviral therapy is likely to occur (Zoulim 2005a,
Zoulim 2005b, Zoulim 2009). Resistant HBV genomes can be archived in infected
hepatocytes when nucleocapsids produced in the cytoplasm by reverse transcription
and containing resistant mutants are transported into the nucleus and added to the
cccDNA pool. Under antiviral pressure, these variants will coexist with wild-type
cccDNA molecules and function as templates for the production and possibly
further selection of replication-competent resistant mutants, which will spread to
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other hepatocytes and, eventually may even replace the wild-type cccDNA
molecules in the liver (Zoulim 2006, Zoulim 2009).

During chronic HBV infection immune-mediated cell injury and compensatory
hepatocyte proliferation may favour cccDNA decline and selection of cccDNA-free
cells (Mason 2005, Zhang 2003, Thermet 2008). Notably, studies with the duck
model show that antiviral therapy with polymerase inhibitors induce a greater
cccDNA reduction in animals displaying higher hepatocyte proliferation rates
(Addison 2002). cccDNA decrease was also determined in chronically WHV-
infected woodchuck hepatocytes when cell turnover was induced in vitro by
addition of cellular growth factors and viral replication was suppressed by adefovir
treatment (Dandri 2000). Furthermore, the identification of uninfected cccDNA-
negative cell clones containing “traces” of the infection in form of viral integrations
indicate that cccDNA clearance without cell destruction can occur in chronically
infected woodchucks (Mason 2005). Thus, in chronic infection, killing of
hepatocytes may be instrumental not only to eliminate infected cells but also to
induce hepatocyte proliferation which, in turn, may favour cccDNA loss (Dandri
2005, Lutgehetmann 2010). On the other hand, studies have shown that very low
levels of cccDNA can persist indefinitely, possibly explaining lifelong immune
responses to HBV despite clinical resolution of HBV infection (Rehermann 1996).

As mentioned previously, the cccDNA acts chemically and structurally as an
episomal DNA with a plasmid-like structure (Bock 1994, Bock 2001, Newbold
1995), which is organized as a minichromosome by histone and non-histone
proteins. Hence its function is regulated, similarly to the cellular chromatin, by the
activity of wvarious nuclear transcription factors, including transcriptional
coactivators, repressors and chromatin modifying enzymes (Levrero 2009).
Congruent with the fact that HBV infects hepatocytes, nearly all elements regulating
viral transcription have binding sites for liver-specific transcription factors (Levrero
2009, Quasdorff 2008). Nevertheless, although a number of factors regulating viral
transcription are known, the exact molecular mechanisms regulating HBV
transcription are still poorly defined. Both messenger and pregenomic RNAs are
transported into the cytoplasm, where they are respectively translated or used as the
template for progeny genome production. Thus, the transcription of the pgRNA is
the critical step for genome amplification and determines the rate of HBV
replication. ldentification of the factors affecting stability and transcriptional
activity of the cccDNA in the course of infection and under antiviral therapy may
assist in the design of new therapeutic strategies aimed at silencing and eventually
depleting the cccDNA reservoir.

The next crucial step in HBV replication is the specific packaging of pgRNA, plus
the reverse transcriptase, into newly forming capsids. The pgRNA bears a secondary
structure — named the g structure - that is present at both the 5’ and the 3’ ends. The
¢ hairpin loops at the 5’ end are first recognized by the viral polymerase and act as
the initial packaging signal (Bartenschlager 1992). Binding of polymerase to the
RNA stem-loop structure ¢ initiates packaging of one pgRNA molecule and its
reverse transcription. The first product is single-stranded (ss) DNA of minus
polarity; due to its unique protein priming mechanism, its 5’ end remains covalently
linked to the polymerase. The pgRNA is concomitantly degraded, except for its 5’
terminal (~15-18 nucleotides which serve as primer for plus-strand DNA synthesis),
resulting in rcDNA. The heterogeneous lengths of the plus-strand DNAs generated
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by capsid-assisted reverse transcription may result from a non-identical supply of
dNTPs inside individual nucleocapsids at the moment of their enclosure by the
dNTP impermeable envelope. This predicts that intracellular cores produced in the
absence of envelopment should contain further extended positive DNAS.
Alternatively, space restrictions in the capsid lumen could prevent plus-strand DNA
completion; in this view, further plus-strand elongation after infection of a new cell
might destabilize the nucleocapsid and thus be involved in genome uncoating (Beck
2007, Nassal 2008)

The final replication step, the assembly and release of HBV Dane particles, is also
not fully understood. The envelopment of the DNA-containing nucleocapsids
requires a balanced coexpression of the S and L proteins in order to recruit the
nucleocapsid to the site of budding. Although the role of the envelope proteins in
regulating the amplification of cccDNA in HBV is not well-characterised, recent
studies indicate that the lack of expression of the envelope proteins increased
cccDNA levels, while coexpression of the envelope proteins not only favours the
secretion of viral particles, but also limits the completion of the plus-strand (Lentz
2011).

Animal models of HBV infection

Because of the narrow host range and the lack of easily accessible and robust in
vitro infection systems the study of HBV biology has been limited. Consequently it
has been attempted by researchers all over the world to establish animal models and
cell culture systems that at least partially reproduce some stages of HBV infection
and can be used, e.g., for the preclinical testing of novel antiviral drugs.

Most of the progress in hepatitis B virus research are based on infection studies
performed with the two most used HBV-related animal viruses: DHBYV, which
infects Peking ducks (Mason 1980) and WHV (Summers 1978), which infects the
Eastern American woodchuck (Marmota monax).

One of the major advantages of the DHBV model is that domestic Peking ducks
can be used under normal laboratory conditions and DHBV-permissive primary
hepatocytes from ducklings or embryos are easily accessible. Furthermore, ducks
show very high infectivity rates in vivo (Jilbert 1996) with high levels of DHBV
replication and antigen expression. However, in contrast to mammalian
hepadnaviruses, DHBV infection is cleared within a few days post-infection if the
virus is not transmitted vertically. The DHBV genome is also smaller than that of
the mammalian hepadnaviruses and shares little primary nucleotide sequence
homology (40%) with HBV. Furthermore, DHBYV infection is usually not associated
with liver disease and development of hepatocellular carcinoma (HCC).
Nevertheless, the duck model was widely used in preclinical trials (Zimmerman
2008, Reaiche 2010, Chayama 2011) and has contributed substantially to elucidate
the hepadnaviral replication scheme (Mason 1982, Summers 1988, Delmas 2002).

In vitro and in vivo studies with woodchuck hepatitis B virus (WHV) have been
fundamental in the preclinical evaluation of antiviral drugs now in use for treatment
of HBV infection (Moraleda 1997, Tennant 1998, Mason 1998, Block 1998, Dandri
2000, Korba 2004, Menne 2005). This is due to the fact that WHV is more similar
to HBV in terms of genomic organization than the avian hepadnaviruses.
Experimental infection of newborn woodchucks almost invariably leads to chronic
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infection, whereas most animals infected at older ages develop acute hepatitis that
results in an efficient immune response leading to viral clearance. Since acute and
chronic WHV infections in woodchucks show serological profiles similar to those
of HBV infection in humans, the woodchuck system has provided important
information about factors involved in the establishment of virus infection,
replication and viral persistence (Lu 2001). Virtually all WHV chronic carrier
woodchucks succumb to HCC 2-4 years post infection. Like in human HCC,
regenerative  hepatocellular nodules and hepatocellular adenomas are
characteristically observed in WHV-infected woodchuck livers (Korba 2004).
Proto-oncogene activation by WHV DNA integration has been observed frequently
and is thought to play an important role in driving hepatocarcinogenesis in
woodchucks, often activating a member of the myc family by various mechanisms
(Tennant 2004). Viral integration is commonly found in woodchucks even after
resolution of transient infection with WHV (Summers 2003), while its frequency
increases dramatically in chronically infected animals (Mason 2005). Interestingly,
WHYV viral integration was used as a genetic marker to follow the fate of infected
hepatocytes during resolution of transient infection in woodchucks (Summers 2003)
and to estimate the amount of cell turnover occurring in the course of chronic
infection (Mason 2005). Experimental infection studies in woodchucks also
demonstrated that WHV mutants that lacked the X gene were unable or severely
impaired to replicate in vivo (Chen 1993, Zoulim 1994, Zhang 2001). The
woodchuck model of viral-induced HCC has been used to test chemoprevention of
HCC using long-term antiviral nucleoside therapy and for the development of new
imaging agents for the detection of hepatic neoplasms by ultrasound and magnetic
resonance imaging (Tennant 2004). One main difference between human and rodent
hepatitis B resides in the absence of associated cirrhosis in woodchuck and squirrel
livers, even after prolonged viral infection (Buendia 1998). It is possible that the
rapid onset of hepatocyte proliferation following liver damage in rodents does
account for this discrepancy. In general, despite important advances achieved in
understanding the pathogenesis of WHYV infection, one general disadvantage for
using woodchucks is that they are genetically heterogeneous animals, difficult to
breed in captivity and to handle in a laboratory setting.

Although HBV infects humans exclusively, it can be used to infect chimpanzees
experimentally and, to a certain extent, tupaia, the Asian tree shrew (Baumert
2005). Chimpanzees were the first animals found to be susceptible to HBV infection
(Barker 1973) and play an important role in the development of vaccines and in the
evaluation of the efficacy of therapeutic antibodies (Ogata 1999, Dagan 2003).
Though chimpanzees are not prone to develop chronic liver disease (Gagneux
2004), they provide an ideal model for the analysis of early immunological events
of HBV acute infection and pathogenesis (Guidotti 1999). Infection experiments
with chimpanzees showed that the majority of viral DNA is eliminated from the
liver by non-cytolytic mechanisms that precedes the peek of T cell infiltration
(Guidotti 1999). T cell depletion studies in chimpanzees also indicate that the
absence of CD8-positive cells greatly delay the onset of viral clearance (Thimme
2003). Chimpanzees have been used for preclinical testing of preventive and
therapeutic vaccines (Will 1982, Guidotti 1999, Ilwarson 1985, Kim 2008, Murray
2005). Nonetheless, the large size, the strong ethical constraints and the high costs
of chimpanzees severely limit their use for research purposes.
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The tree shrew species Tupaia belangeri has been analyzed for the study of HBV
infection both in vitro and in vivo, taking advantage of the adaptability of these non-
rodent mammals to the laboratory environment (Baumert 2005, von Weizsacker
2004). Inoculation of tree shrews with HBV-positive human serum was shown to
result in viral DNA replication in their livers, HBsAg secretion into the serum, and
production of antibodies to HBsAg and HBeAg (Walter 1996). Although
experimental infection of tree shrew with HBV infectious serum is not highly
efficient, productive HBV infection was successfully passed through five generations
of tree shrews and was specifically blocked by immunization with hepatitis B vaccine
(Yan 1996a). Interestingly, the development of hepatocellular carcinoma in tree
shrews exposed to hepatitis B virus and/or aflatoxin B1 was reported (Yan 1996b).
Whereas experimental infection of tree shrews causes only a mild, transient infection
with low viral titers in these animals, primary hepatocytes isolated from T. belangeri
turned out to be a valuable alternative source of HBV-permissive cells (von
Weizsacker 2004). More recently, the woolly monkey hepatitis B virus (WMHV)
was isolated from a woolly monkey (Lagothrix lagotricha), an endangered new world
primate (Lanford 1998). Interestingly, it has been shown that primary tupaia
hepatocytes are susceptible to infection with WMHBYV (Kock 2001, Dandri 2005a),
providing a useful and more accessible alternative system for studying the early steps
of hepadnaviral infection in vitro (Schulze 2011) and in vivo (Petersen 2008).

Because of the different limitations encountered using chimpanzees and models
based on HBV-related viruses, it is not surprising that recent developments have
focused on using the natural target of HBV infection: the human hepatocyte.
However, primary human hepatocytes are not easy to handle, cannot be propagated
in vitro and their susceptibility to HBV infection is generally low and highly
variable. Furthermore, cultured cells may respond differently to the infection than
hepatocytes in the liver. The generation of mice harboring human chimeric livers
offered new possibilities to overcome some of these limitations. Two major models
are currently available: the urokinase-type plasminogen activator (UPA) transgenic
mouse (Rhim 1994) and the knockout fumarylacetoacetate hydrolase (FAH) mouse
(Azuma 2007). In both systems, the absence of adaptive immune responses permits
the engraftment of transplanted xenogenic hepatocytes, while the presence of
transgene-induced hepatocyte damage creates the space and the regenerative
stimulus necessary for the transplanted cells to repopulate the mouse liver. Both
models permit the establishment of HBV infection, which can then persist for the
life-span of the chimeric mouse (Dandri 2001, Bissig 2010). While mouse
hepatocytes do not support HBV infection, human chimeric mice can be efficiently
infected by injecting infectious serum derived from either patients or chimeric mice.
Furthermore, genetically engineered viruses created in cell culture can be used to
investigate phenotype and in vivo fitness of distinct HBV genotypes and variants
(Tsuge 2005). Within the mouse liver human hepatocytes maintain a functional
innate immune system and respond to stimuli induced by exogenously applied
human IFN o. The lack of an adaptive immune system and the undetectable
responsiveness of mouse liver cells to human IFN o make the model ideal to exploit
the capacities of HBV to interfere with pathways of the innate antiviral response in
human hepatocytes (Lutgehetmann 2011). Chimeric mice can be superinfected or
simultaneously infected with different human hepatotropic viruses to investigate the
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mechanisms of virus interference and response to antiviral treatment in the setting
of coinfection (Hiraga 2009).
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6. HCV Virology

Bernd Kupfer

History

Hepatitis C virus (HCV) is a major cause of progressive liver disease with
approximately 130-170 million people infected worldwide. HCV induces chronic
infection in up to 80% of infected individuals. The main complications of HCV
infection are severe liver fibrosis and cirrhosis, and 30-50% of individuals with
cirrhosis go on to develop hepatocellular carcinoma (Tong 1995, Poynard 1997).

Until 1975, only two hepatitis viruses had been identified, the “infectious hepatitis
virus” (hepatitis A virus, HAV) and the “serum hepatitis virus” (hepatitis B virus,
HBV). However, other viruses were excluded from being the cause of
approximately 65% of post-transfusion hepatitis. Therefore, these hepatitis cases
were termed “non-A, non-B hepatitis” (NANBH) (Feinstone 1975). Inoculation of
chimpanzees (Pan troglodytes) with blood products derived from humans with
NANB hepatitis led to persistent increases of serum alanine aminotransferase (ALT)
indicating that an infectious agent was the cause of the disease (Alter 1978,
Hollinger 1978). Subsequently, it was demonstrated that the NANBH agent could
be inactivated by chloroform (Feinstone 1983). Moreover, it was reported that the
infectious agent was able to pass through 80 nm membrane filters (Bradley 1985).
Taken together these findings suggested that the NANBH causing agent would be a
small virus with a lipid envelope. However, the lack of a suitable cell culture system
for cultivation of the NANBH agent and the limited availability of chimpanzees
prevented further characterization of the causative agent of NANBH for several
years. In 1989, using a newly developed cloning strategy for nucleic acids derived
from plasma of NANBH infected chimpanzees the genome of the major causative
agent for NANBH was characterized (Choo 1989). cDNA clone 5-1-1 encoded
immunological epitopes that interacted with sera from individuals with NANBH
(Choo 1989, Kuo 1989). The corresponding infectious virus causing the majority of
NANBH was subsequently termed hepatitis C virus (HCV).
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Taxonomy and genotypes

HCV is a small-enveloped virus with one single-stranded positive-sense RNA
molecule of approximately 9.6 kb. It is a member of the Flaviviridae family. This
viral family contains three genera, flavivirus, pestivirus, and hepacivirus. To date,
only two members of the hepacivirus genus have been identified, HCV and GB
virus B (GBV-B), a virus that had been initially detected together with the then-
unclassified virus GB virus A (GBV-A) in a surgeon with active hepatitis (Thiel
2005, Ohba 1996, Simons 1995). However, the natural hosts for GBV-B and GBV-
C seem to be monkeys of the Saguinus species (tamarins). Analyses of viral
sequences and phylogenetic comparisons support HCV’s membership in a distinct
genus from flavivirus or pestivirus (Choo 1991). The error-prone RNA polymerase
of HCV together with the high replication rate of the virus is responsible for the
large interpatient genetic diversity of HCV strains. Moreover, the extent of viral
diversification of HCV strains within a single HCV-positive individual increases
significantly over time, resulting in the development of quasispecies (Bukh 1995).

Comparisons of HCV nucleotide sequences derived from individuals from
different geographical regions revealed the presence of six major HCV genotypes
with a large number of subtypes within each genotype (Simmonds 2004, Simmonds
2005). Sequence divergence of genotypes and subtypes is 20% and 30%,
respectively. HCV strains belonging to the major genotypes 1, 2, 4, and 5 are found
in sub-Saharan Africa whereas genotypes 3 and 6 are detected with extremely high
diversity in South East Asia. This suggests that these geographical areas could be
the origin of the different HCV genotypes. The emergence of different HCV
genotypes in North America and Europe and other non-tropical countries appears to
represent more recent epidemics introduced from the countries of the original HCV
endemics (Simmonds 2001, Ndjomou 2003). Besides epidemiological aspects,
determination of the HCV genotype plays an important role for the initiation of anti-
HCV treatment since the response of different genotypes varies significantly with
regard to specific antiviral drug regimens, e.g., genotype 1 is most resistant to the
current therapy of the combination of pegylated interferon o and ribavirin (Manns
2001, Fried 2002).

Viral structure

Structural analyses of HCV virions are very limited since the virus is difficult to
cultivate in cell culture systems, a prerequisite for yielding sufficient virions for
electron microscopy. Moreover, serum-derived virus particles are associated with
serum low-density lipoproteins (Thomssen 1992), which makes it difficult to isolate
virions from serum/plasma of infected subjects by centrifugation. Visualization of
HCV virus-like particles via electron microscopy succeeded only rarely (Kaito
1994, Shimizu 19964, Prince 1996) and it was a point of controversy if the detected
structures really were HCV virions. Nevertheless, these studies suggest that HCV
has a diameter of 55-65 nm confirming size prediction of the NANBH agent by
ultra-filtration (Bradley 1985). Various forms of HCV virions appear to exist in the
blood of infected individuals: virions bound to very low density lipoproteins
(VLDL), virions bound to low density lipoproteins (LDL), virions complexed with
immunoglobulins, and free circulating virions (Bradley 1991, Thomssen 1992,
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Thomssen 1993, Agnello 1999, Andre 2002). The reasons for the close association
of a major portion of circulating virions with LDL and VLDL remain unexplained.
One possible explanation is that HCV theoretically enters hepatocytes via the LDL
receptor (Agnello 1999, Nahmias 2006). Moreover, it is speculated that the
association with LDL and/or VLDL protects the virus against neutralization by
HCV-specific antibodies.

The design and optimization of subgenomic and genomic HCV replicons in the
human hepatoma cell line Huh7 offered for the first time the possibility to
investigate HCV RNA replication in a standardized manner (Lohmann 1999, lkeda
2002, Blight 2002). However, despite the high level of HCV gene expression, no
infectious viral particles are actually produced. Therefore, it cannot be used for
structural analysis of free virions.

Infectious HCV particles have been achieved in cell culture by using recombinant
systems (Heller 2005, Lindenbach 2005, Wakita 2005, Zhong 2005, Yu 2007).
However, even in these in vitro systems the limited production of viral particles
prevents 3D structural analysis (Yu 2007). It was also shown by cryoelectron
microscopy (cryoEM) and negative-stain transmission electron microscopy that
HCYV virions isolated from cell culture have a spherical shape with a diameter of
approximately 50 to 55 nm (Heller 2005, Wakita 2005, Yu 2007) confirming earlier
results that measured the size of putative native HCV particles from the serum of
infected individuals (Prince 1996). The outer surface of the viral envelope seems to
be smooth. Size and morphology are therefore very similar to other members of the
Flaviviridae family such as the dengue virus and the West Nile virus (Yu 2007).
Modifying a baculovirus system (Jeong 2004, Qiao 2004) the same authors were
able to produce large quantities of HCV-like particles (HCV-LP) in insect cells (Yu
2007). Analysing the HCV-LPs by cryoEM it was demonstrated that the HCV E1
protein is present in spikes located on the outer surface of the LPs.

Using 3D modeling of the HCV-LPs together with genomic comparison of HCV
and well-characterized flaviviruses it is assumed that 90 copies of a block of two
heterodimers of HCV proteins E1 and E2 form the outer layer of the virions with a
diameter of approximately 50 nm (Yu 2007). This outer layer surrounds the lipid
bilayer that contains the viral nucleocapsid consisting of several molecules of the
HCV core (C) protein. An inner spherical structure with a diameter of
approximately 30-35 nm has been observed (Wakita 2005) suggesting the
nucleocapsid that harbours the viral genome (Takahashi 1992).

Genome organization

The genome of the hepatitis C virus consists of one 9.6 kb single-stranded RNA
molecule with positive polarity. Similar to other positive-strand RNA viruses, the
genomic RNA of hepatitis C virus serves as messenger RNA (mRNA) for the
translation of viral proteins. The linear molecule contains a single open reading
frame (ORF) coding for a precursor polyprotein of approximately 3000 amino acid
residues (Figure 1). During viral replication the polyprotein is cleaved by viral as
well as host enzymes into three structural proteins (core, E1, E2) and seven non-
structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B). An additional
protein (termed F [frameshift] or ARF [alternate reading frame]) is predicted as a
result of ribosomal frameshifting during translation within the core region of the
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genomic RNA (Xu 2001, Walewski 2001, Varaklioti 2002, Branch 2005). Detection
of anti-F protein antibodies in the serum of HCV-positive subjects indicates that the
protein is expressed during infection in vivo (Walewski 2001, Komurian-Pradel
2004).

The structural genes encoding the viral core protein and the viral envelope
proteins E1 and E2 are located at the 5 terminus of the open reading frame
followed downstream by the coding regions for the non-structural proteins p7, NS2,
NS3, NS4A, NS4B, NS5A, and NS5B (Figure 1). The structural proteins are
essential components of the HCV virions, whereas the non-structural proteins are
not associated with virions but are involved in RNA replication and virion
morphogenesis.

The ORF is flanked by 5 and 3’ nontranslated regions (NTR; also called
untranslated regions, UTR or noncoding regions, NCR) containing nucleotide
sequences relevant for the regulation of viral replication. Both NTRs harbour highly
conserved regions compared to the protein encoding regions of the HCV genome.
The high grade of conservation of the NTRs makes them candidates i) for improved
molecular diagnostics, ii) as targets for antiviral therapeutics, and iii) as targets for
an anti-HCV vaccine.

A) large open reading frame
5'NTR 3NTR
o —

[ 'l | [ 1 | I
nt position 342 915 1491 2580 2769 3420 5313 5475 6258 7602 9378

B) signal peptidase NS2-NS3 protease NS3-NS4A protease

el |
p7 NS4A

A

SPP

Figure 1. Genome organization and polyprotein processing. A) Nucleotide positions
correspond to the HCV strain H77 genotype 1a, accession number NC_004102.

nt, nucleotide; NTR, nontranslated region. B) Cleavage sites within the HCV precursor
polyprotein for the cellular signal peptidase the signal peptide peptidase (SPP) and the viral
proteases NS2-NS3 and NS3-NS4A, respectively.

The 5’NTR is approximately 341 nucleotides long with a complex secondary
structure of four distinct domains (I-1V) (Fukushi 1994, Honda 1999). The first 125
nucleotides of the 5’NTR spanning domains | and Il have been shown to be
essential for viral RNA replication (Friebe 2001, Kim 2002). Domains I1-1V build
an internal ribosome entry side (IRES) involved in ribosome binding and
subsequent cap-independent initiation of translation (Tsukiyama-Kohara 1992,
Wang 1993).

The 3’NTR consists of three functionally distinct regions: a variable region, a
poly U/UC tract of variable length, and the highly conserved X tail at the 3’
terminus of the HCV genome (Tanaka 1995, Kolykhalov 1996, Blight 1997). The
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variable region of approximately 40 nucleotides is not essential for RNA
replication. However, deletion of this sequence led to significantly decreased
replication efficiency (Yanagi 1999, Friebe 2002). The length of the poly U/UC
region varies in different HCV strains ranging from 30 to 80 nucleotides
(Kolykhalov 1996). The minimal length of that region for active RNA replication
has been reported to be 26 homouridine nucleotides in cell culture (Friebe 2002).
The highly conserved 98-nucleotide X tail consists of three stem-loops (SL1-SL3)
(Tanaka 1996, Ito 1997, Blight 1997) and deletions or nucleotide substitutions
within that region are most often lethal (Yanagi 1999, Kolykhalov 2000, Friebe
2002, Yi 2003). Another so-called “kissing-loop™ interaction of the 3"X tail SL2 and
a complementary portion of the NS5B encoding region has been described (Friebe
2005). This interaction induces a tertiary RNA structure of the HCV genome that is
essential for HCV replication in cell culture systems (Friebe 2005, You 2008).
Finally, both NTRs appear to work together in a long-range RNA-RNA interaction
possibly resulting in temporary genome circularization (Song 2006).

Genes and proteins

As described above, translation of the HCV polyprotein is initiated through
involvement of some domains in NTRs of the genomic HCV RNA. The resulting
polyprotein consists of ten proteins that are co-translationally or post-translationally
cleaved from the polyprotein. The N-terminal proteins C, E1, E2, and p7 are
processed by a cellular signal peptidase (SP) (Hijikata 1991). The resulting
immature core protein still contains the E1 signal sequence at its C terminus.
Subsequent cleavage of this sequence by a signal peptide peptidase (SPP) leads to
the mature core protein (McLauchlan 2002). The non-structural proteins NS2 to
NS5B of the HCV polyprotein are processed by two virus-encoded proteases (NS2-
NS3 and NS3) with the NS2-NS3 cysteine protease cleaving at the junction of NS2-
NS3 (Santolini 1995) and the NS3 serine protease cleaving the remaining functional
proteins (Bartenschlager 1993, Eckart 1993, Grakoui 1993a, Tomei 1993).

The positions of viral nucleotide and amino acid residues correspond to the HCV
strain H77 genotype 1l1a, accession number NC_004102. Some parameters
characterizing HCV proteins are summarised in Table 1.

Core. The core-encoding sequence starts at codon AUG at nt position 342 of the
H77 genome, the start codon for translation of the entire HCV polyprotein. During
translation the polyprotein is transferred to the endoplasmic reticulum (ER) where
the core protein (aa 191) is excised by a cellular signal peptidase (SP). The C
terminus of the resulting core precursor still contains the signal sequence for ER
membrane translocation of the E1 ectodomain (aa 174-191). This protein region is
further processed by the cellular intramembrane signal peptide peptidase (SPP)
leading to removal of the E1 signal peptide sequence (Hissy 1996, McLauchlan
2002, Weihofen 2002).

The multifunctional core protein has a molecular weight of 21 kilodalton (kd). In
vivo, the mature core molecules are believed to form homo-multimers located
mainly at the ER membrane (Matsumoto 1996). They have a structural function
since they form the viral capsid that contains the HCV genome. In addition, the core
protein has regulatory functions including particle assembly, viral RNA binding,
and regulation of RNA translation (Ait-Goughoulte 2006, Santolini 1994).
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Moreover, protein expression analyses indicate that the core protein may be
involved in many other cellular reactions such as cell signalling, apoptosis, lipid
metabolism, and carcinogenesis (Tellinghuisen 2002). However, these preliminary
findings need to be analysed further.

Table 1. Overview of the size of HCV proteins.*

Protein No. of aa aa position MW of protein
in ref. seq.

Core immature 191 1-191 23 kd

Core mature 174 1-174 21 kd

F-protein or ARF-protein 126-161 ~16-17 kd

El 192 192-383 35 kd

E2 363 384-746 70 kd

p7 63 747-809 7 kd

NS2 217 810-1026 21 kd

NS3 631 1027-1657 70 kd

NS4A 54 1658-1711 4 kd

NS4B 261 1712-1972 27 kd

NS5A 448 1973-2420 56 kd

NS5B 591 2421-3011 66 kd

* aa, amino acid; MW, molecular weight; kd, kilodalton; ref. seq., reference sequence (HCV
strain H77; accession number NC_004102).

E1 and E2. Downstream of the core coding region of the HCVV RNA genome two
envelope glycoproteins are encoded, E1 (gp35, aa 192) and E2 (gp70, aa 363).
During translation at the ER both proteins are cleaved from the precursor
polyprotein by a cellular SP. Inside the lumen of the ER both polypeptides
experience N-linked glycosylation post-translationally (Duvet 2002). Both
glycoproteins E1 and E2 harbour 5 and 11 putative N-glycosylation sites,
respectively.

E1 and E2 are type | transmembrane proteins with a large hydrophilic ectodomain
of approximately 160 and 334 aa and a short transmembrane domain (TMD) of 30
aa. The TMD are responsible for the anchoring of the envelope proteins in the
membrane of the ER and ER retention (Cocquerel 1998, Duvet 1998, Cocquerel
1999, Cocquerel 2001). Moreover, the same domains have been reported to
contribute to the formation of E1-E2 heterodimers (Op de Beeck 2000). The E1-E2
complex is involved in adsorption of the virus to its putative receptors tetraspanin
CD81 and low-density lipoprotein receptor inducing fusion of the viral envelope
with the host cell plasma membrane (Agnello 1999, Flint 1999, Wunschmann
2000). However, the precise mechanism of host cell entry is still not understood
completely. Several other host factors have been identified to be involved in viral
entry. These candidates include the scavenger receptor B type | (Scarselli 2002,
Kapadia 2007), the tight junction proteins claudin-1 (Evans 2007) and occludin
(Ploss 2009), the C-type lectins L-SIGN and DC-SIGN (Gardner 2003, Lozach
2003, P6hImann 2003) and heparan sulfate (Barth 2003).

Two hypervariable regions have been identified within the coding region of E2.
These regions termed hypervariable region 1 (HVR1) and 2 (HVR2) differ by up to
80% in their amino acid sequence (Weiner 1991, Kato 2001). The first 27 aa of the
E2 ectodomain represent HVR1, while the HVR2 is formed by a stretch of seven
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amino acids (position 91-97). The high variability of the HVRs reflects exposure of
these domains to HCV-specific antibodies. In fact, E2-HVR1 has been shown to be
the most important target for neutralizing antibodies (Farci 1996, Shimizu 1996b).
However, the combination of the mutation of the viral genome with the selective
pressure of the humoral immune response leads to viral escape via epitope
alterations. This makes the development of vaccines that induce neutralizing
antibodies challenging.

The p7 protein. The small p7 protein (63 aa) is located between the E2 and NS2
regions of the polyprotein precursor. During translation the cellular SP cleaves the
E2-p7 as well as the p7-NS2 junction. The functional p7 is a membrane protein
localised in the endoplasmic reticulum where it forms an ion channel (Hagshenas
2007, Pavlovic 2003, Griffin 2003). The p7 protein is not essential for RNA
replication since replicons lacking the p7 gene replicate efficiently (Lohmann 1999,
Blight 2000), however, it has been suggested that p7 plays an essential role for the
formation of infectious virions (Sakai 2003, Hagshenas 2007).

NS2. The non-structural protein 2 (p21, 217 aa) together with the N-terminal
portion of the NS3 protein form the NS2-3 cysteine protease which catalyses
cleavage of the polyprotein precursor between NS2 and NS3 (Grakoui 1993b,
Santolini 1995). The N-terminus of the functional NS2 arises from the cleavage of
the p7-NS2 junction by the cellular SP. Moreover, after cleavage from the NS3 the
protease domain of NS2 seems to play an essential role in the early stage of virion
morphogenesis (Jones 2007).

NS3. The non-structural protein 3 (p70, 631 aa) is cleaved at its N terminus by the
NS2-NS3 protease. The N terminus (189 aa) of the NS3 protein has a serine
protease activity. However, in order to develop full activity of the protease the NS3
protease domain requires a portion of NS4A (Faila 1994, Bartenschlager 1995, Lin
1995, Tanji 1995, Tomei 1996). NS3 together with the NS4A cofactor are
responsible for cleavage of the remaining downstream cleavages of the HCV
polyprotein precursor. Since the NS3 protease function is essential for viral
infectivity it is a promising target in the design of antiviral treatments.

The C-terminal portion of NS3 (442 aa) has ATPase/helicase activity, i.e., it
catalyses the binding and unwinding of the viral RNA genome during viral
replication (Jin 1995, Kim 1995). However, recent findings indicate that other non-
structural HCV proteins such as the viral polymerase NS5B may interact
functionally with the NS3 helicase (Jennings 2008). These interactions need to be
investigated further in order to better understand the mechanisms of HCV
replication.

NS4A. The HCV non-structural protein 4A (p4) is a 54 amino acid polypeptide
that acts as a cofactor of the NS3 serine protease (Faila 1994, Bartenschlager 1995,
Lin 1995, Tanji 1995, Tomei 1996). Moreover, this small protein is involved in the
targeting of NS3 to the endoplasmic reticulum resulting in a significant increase of
NS3 stability (Wolk 2000).

NS4B. The NS4B (p27) consists of 217 amino acids. It is an integral membrane
protein localized in the endoplasmic reticulum. The N-terminal domain of the NS4B
has an amphipathic character that targets the protein to the ER. This domain is
crucial in HCV replication (Elazar 2004, Gretton 2005) and therefore an interesting
target for the development of anti-HCV therapeutics or vaccines. In addition, a
nucleotide-binding motif (aa 129-134) has been identified (Einav 2004). Although
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the function of NS4B is still unknown, it has been demonstrated that the protein
induces a membranous web that may serve as a platform for HCV RNA replication
(Egger 2002).

NS5A. The NS5A protein (p56; 458 aa) is a membrane-associated phosphoprotein
that appears to have multiple functions in viral replication. It is phosphorylated by
different cellular protein kinases indicating an essential but still not understood role
of NS5A in the HCV replication cycle. In addition, NS5A has been found to be
associated with several other cellular proteins (MacDonald 2004) making it difficult
to determine the exact functions of the protein. One important property of NS5A is
that it contains a domain of 40 amino acids, the so-called IFN-a sensitivity-
determining region (ISDR) that plays a significant role in the response to IFN-a-
based therapy (Enomoto 1995, Enomoto 1996). An increasing number of mutations
within the ISDR showed positive correlation with sustained virological response to
IFN-a-based treatment.

NS5B. The non-structural protein 5B (p66; 591 aa) represents the RNA-
dependent RNA polymerase of HCV (Behrens 1996). The hydrophobic domain (21
aa) at the C terminus of NS5B inserts into the membrane of the endoplasmic
reticulum, while the active sites of the polymerase are located in the cytoplasm
(Schmidt-Mende 2001).

The cytosolic domains of the viral enzyme form the typical polymerase right-
handed structure with “palm”, “fingers”, and “thumb” subdomains (Ago 1999,
Bressanelli 1999, Lesburg 1999). In contrast to mammalian DNA and RNA
polymerases the fingers and thumb subdomains are connected resulting in a fully
enclosed active site for nucleotide triphosphate binding. This unique structure
makes the HCV NS5B polymerase an attractive target for the development of
antiviral drugs.

Using the genomic HCV RNA as a template, the NS5B promotes the synthesis of
minus-stranded RNA that then serves as a template for the synthesis of genomic
positive-stranded RNA by the polymerase.

Similar to other RNA-dependent polymerases, NS5B is an error-prone enzyme
that incorporates wrong ribonucleotides at a rate of approximately 10° per
nucleotide per generation. Unlike cellular polymerases, the viral NS5B lacks a
proof-reading mechanism leading to the conservation of misincorporated
ribonucleotides. These enzyme properties together with the high rate of viral
replication promote a pronounced intra-patient as well as inter-patient HCV
evolution.

F protein, ARFP. In addition to the ten proteins derived from the long HCV
ORF, the F (frameshift) or ARF (alternate reading frame) or core+1 protein has
been reported (Walewski 2001, Xu 2001, Varaklioti 2002). As the designations
indicate the ARFP is the result of a -2/+1 ribosomal frameshift between codons 8
and 11 of the core protein-encoding region. The ARFP length varies from 126 to
161 amino acids depending on the corresponding genotype. In vitro studies have
shown that ARFP is a short-lived protein located in the cytoplasm (Roussel 2003)
primarily associated with the endoplasmic reticulum (Xu 2003). Detection of anti-F
protein antibodies in the serum of HCV-positive subjects indicates that the protein is
expressed during infection in vivo (Walewski 2001, Komurian-Pradel 2004).
However, the functions of ARFP in the viral life cycle are still unknown and remain
to be elucidated.
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Viral lifecycle

Due to the absence of a small animal model system and efficient in vitro HCV
replication systems it has been difficult to investigate the viral life cycle of HCV.
The recent development of such systems has offered the opportunity to analyse in
detail the different steps of viral replication.
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Figure 2. Current model of the HCV lifecycle. Designations of cellular components are in red.
For a detailed illustration of viral translation and RNA replication, see Pawlotsky 2007.
Abbreviations: HCV +ssRNA, single stranded genomic HCV RNA with positive polarity; rough
ER, rough endoplasmic reticulum; PM, plasma membrane. For other abbreviations see text.

Adsorption and viral entry

The most likely candidate as receptor for HCV is the tetraspanin CD81 (Pileri
1998). CD81 is an ubiquitous 25 kd molecule expressed on the surface of a large
variety of cells including hepatocytes and PBMCs. Experimental binding of anti-
CD81 antibodies to CD81 were reported to inhibit HCV entry into Huh7 cells and
primary human hepatocytes (Hsu 2003, Bartosch 2003a, Cormier 2004, McKeating
2004, Zhang 2004, Lindenbach 2005, Wakita 2005). Moreover, gene silencing of
CD81 using specific SiRNA molecules confirmed the relevance of CD81 in viral
entry (Bartosch 2003b, Cormier 2004, Zhang 2004, Akazawa 2007). Finally,
expression of CD81 in cell lines lacking CD81 made them permissive for HCV
entry (Zhang 2004, Lavillette 2005, Akazawa 2007). However, more recent studies
have shown that CD81 alone is not sufficient for HCV viral entry and that co-
factors such as scavenger receptor B type | (SR-BI) are needed (Bartosch 2003b,
Hsu 2003, Scarselli 2002, Kapadia 2007). Moreover, it appears that CD81 is
involved in a post-HCV binding step (Cormier 2004, Koutsoudakis 2006, Bertaud
2006). These findings together with the identification of other host factors involved
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in HCV cell entry generate the current model for the early steps of HCV infection
(Helle 2008).

Adsorption of HCV to its target cell is the first step of viral entry. Binding is
possibly initiated by the interaction of the HCV E2 envelope glycoprotein and the
glycosaminglycan heparan sulfate on the surface of host cells (Germi 2002, Barth
2003, Basu 2004, Heo 2004). Moreover, it is assumed that HCV initiates hepatocyte
infection via LDL receptor binding (Agnello 1999, Monazahian 1999, Wiinschmann
2000, Nahmias 2006, Molina 2007). This process may be mediated by VLDL or
LDL and is reported to be associated with HCV virions in human sera (Bradley
1991, Thomssen 1992, Thomssen 1993). After initial binding the HCV E2
glycoprotein interacts with the SR-BI in cell culture (Scarselli 2002). SR-BI is a
protein expressed on the surface of the majority of mammalian cells. It acts as a
receptor for LDL as well as HDL (Acton 1994, Acton 1996) emphasizing the role of
these compounds for HCV infectivity. Alternative splicing of the SR-BI transcript
leads to the expression of a second isoform of the receptor SR-BIl (Webb 1998),
which also may be involved in HCV entry into target cells (Grove 2007). As is the
case for all steps of viral entry the exact mechanism of the HCVE2/SR-BI
interaction remains unknown. In some studies it has been reported that HCV
binding to SR-BI is a prerequisite for the concomitant or subsequent interaction of
the virus with CD81 (Kapadia 2007, Zeisel 2007). The multi-step procedure of
HCV cell entry was shown to be even more complex since a cellular factor termed
claudin-1 (CLDN1) has been newly identified as involved in this process (Evans
2007). CLDN1 is an integral membrane protein that forms a backbone of tight
junctions and is highly expressed in the liver (Furuse 1998). Inhibition assays reveal
that CLDN1 involvement occurs downstream of the HCV-CDB81 interaction (Evans
2007). Recent findings suggest that CLDN1 could also act as a compound enabling
cell-to-cell transfer of hepatitis C virus independently of CD81 (Timpe 2007).
Furthermore, it was reported that two other members of the claudin family claudin-6
and claudin-9 may play a role in HCV infection (Zheng 2007, Meertens 2008). The
fact that some human cell lines were not susceptible to HCV infection despite
expressing SR-BI, CD81, and CLDNL1 indicates that other cellular factors are
involved in viral entry (Evans 2007). Very recently, a cellular four-transmembrane
domain protein named occludin (OCLN) was identified to represent an additional
cellular factor essential for the susceptibility of cells to HCV infection (Liu 2009,
Ploss 2009). Similar to claudin-1, OCLN is a component of the tight junctions in
hepatocytes. All tested cells expressing SR-BI, CD81, CLDN1, and OCLN were
susceptible to HCV. Although the precise mechanism of HCV uptake in hepatocytes
is still not clarified, these four proteins may represent the complete set of host cell
factors necessary for cell-free HCV entry.

After the complex procedure of binding to the different host membrane factors
HCV enters the cell in a pH-dependent manner indicating that the virus is
internalized via clathrin-mediated endocytosis (Bartosch 2003b, Hsu 2003,
Blanchard 2006, Codran 2006). The acidic environment within the endosomes is
assumed to trigger HCV E1-E2 glycoprotein-mediated fusion of the viral envelope
with the endosome membrane (Blanchard 2006, Meertens 2006, Lavillette 2007).

In summary, HCV adsorption and viral entry into the target cell is a very complex
procedure that is not yet fully understood. Despite having identified several host
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factors that probably interact with the viral glycoproteins, the precise mechanisms
of interaction need to continue to be investigated.

Besides the infection of cells through cell-free HCV it has been documented that
HCV can also spread via cell-to-cell transmission (Valli 2006, Valli 2007). This
transmission path may differ significantly with regard to the cellular factors needed
for HCV entry into cells. CD81 is dispensable for cell-to-cell transmission in
cultivated hepatoma cells (Witteveldt 2009). These findings require further
investigation in order to analyze the process of cell-to-cell transmission of HCV
both in vitro and in vivo. Antiviral treatment strategies must account for the cellular
pathways of both cell-free virus and HCV transmitted via cell-to-cell contact.

Translation and posttranslational processes

As a result of the fusion of the viral envelope and the endosomic membrane, the
genomic HCV RNA is released into the cytoplasm of the cell. As described above,
the viral genomic RNA possesses a nontranslated region (NTR) at each terminus.
The 5’NTR consists of four distinct domains, I-1VV. Domains I1-1V form an internal
ribosome entry side (IRES) involved in ribosome-binding and subsequent cap-
independent initiation of translation (Fukushi 1994, Honda 1999, Tsukiyama-
Kohara 1992, Wang 1993). The HCV-IRES binds to the 40S ribosomal subunit
complexed with eukaryotic initiation factors 2 and 3 (elF2 and elF3), GTP, and the
initiator tRNA resulting in the 48S preinitiation complex (Spahn 2001, Otto 2002,
Sizova 1998, reviewed in Hellen 1999). Subsequently, the 60S ribosomal subunit
associates with that complex leading to the formation of the translational active
complex for HCV polyprotein synthesis at the endoplasmic reticulum. HCV RNA
contains a large ORF encoding a polyprotein precursor. Posttranslational cleavages
lead to 10 functional viral proteins Core, E1, E2, p7, NS2-NS5B. The viral F protein
(or ARF protein) originates from a ribosomal frameshift within the first codons of
the core-encoding genome region (Walewski 2001, Xu 2001, Varaklioti 2002).
Besides several other cellular factors that have been reported to be involved in HCV
RNA translation, various viral proteins and genome regions have been shown to
enhance or inhibit viral protein synthesis (Zhang 2002, Kato 2002, Wang 2005, Kou
2006, Bradrick 2006, Song 2006).

The precursor polyprotein is processed by at least four distinct peptidases. The
cellular signal peptidase (SP) cleaves the N-terminal viral proteins immature core
protein, E1, E2, and p7 (Hijikata 1991), while the cellular signal peptide peptidase
(SPP) is responsible for the cleavage of the E1 signal sequence from the C-terminus
of the immature core protein, resulting in the mature form of the core (McLauchlan
2002). The E1 and E2 proteins remain within the lumen of the ER where they are
subsequently N-glycosylated with E1 having 5 and E2 harbouring 11 putative N-
glycosylation sites (Duvet 2002).

In addition to the two cellular peptidases HCV encodes two viral enzymes
responsible for cleavage of the non-structural proteins NS2 to NS5B within the
HCV polyprotein precursor. The zinc-dependent NS2-NS3 cysteine protease
consisting of the NS2 protein and the N-terminal portion of NS3 autocatalytically
cleaves the junction between NS2 and NS3 (Santolini 1995), whereas the NS3
serine protease cleaves the remaining functional proteins (Bartenschlager 1993,
Eckart 1993, Grakoui 1993a, Tomei 1993). However, for its peptidase activity NS3
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needs NS4A as a cofactor (Failla 1994, Tanji 1995, Bartenschlager 1995, Lin 1995,
Tomei 1996).

HCV RNA replication

The complex process of HCV RNA replication is poorly understood. The key
enzyme for viral RNA replication is NS5B, an RNA-dependent RNA polymerase
(RdRp) of HCV (Behrens 1996). In addition, several cellular as well as viral factors
have been reported to be part of the HCV RNA replication complex. One important
viral factor for the formation of the replication complex appears to be NS4B, which
is able to induce an ER-derived membranous web containing most of the non-
structural HCV proteins including NS5B (Egger 2002). This web could serve as the
platform for the next steps of viral RNA replication. The RdRp uses the previously
released genomic positive-stranded HCV RNA as a template for the synthesis of an
intermediate minus-stranded RNA. Recently it has been reported that the cellular
peptidyl-prolyl isomerases cyclophilin A, B and C (Cyp A, Cyp B, and Cyp C)
could stimulate binding of the RdRp to the viral RNA resulting in increased HCV
RNA synthesis (Watashi 2005, Nakagawa 2005, Yang 2008, Heck 2009). However,
these reports are in part inconsistent and further studies are needed in order to
investigate the involvement of cyclophilins in HCV RNA replication.

After the viral polymerase has bound to its template, the NS3 helicase is assumed
to unwind putative secondary structures of the template RNA in order to facilitate
the synthesis of minus-strand RNA (Jin 1995, Kim 1995). In turn, again with the
assistance of the NS3 helicase, the newly synthesized antisense RNA molecule
serves as the template for the synthesis of numerous plus-stranded RNA. The
resulting sense RNA may be used subsequently as genomic RNA for HCV progeny
as well as for polyprotein translation.

Assembly and release

After the viral proteins, glycoproteins, and the genomic HCV RNA have been
synthesized these single components have to be arranged in order to produce
infectious virions. As is the case for all other steps in the HCV lifecycle viral
assembly is a multi-step procedure involving most viral components along with
many cellular factors. Investigation of viral assembly and particle release is still in
its infancy since the development of in vitro models for the production and release
of infectious HCV occurred only recently. Previously, it was reported that core
protein molecules were able to self-assemble in vitro, yielding nucleocapsid-like
particles. More recent findings suggest that viral assembly takes place within the
endoplasmic reticulum (Gastaminza 2008) and that lipid droplets (LD) are involved
in particle formation (Moradpour 1996, Barba 1997, Miyanari 2007, Shavinskaya
2007, Appel 2008). It appears that LD-associated core protein targets viral non-
structural proteins and the HCV RNA replication complex including positive- and
negative-stranded RNA from the endoplasmic reticulum to the LD (Miyanari 2007).
Beside the core protein, LD-associated NS5A seems to play a key role in the
formation of infectious viral particles (Appel 2008). Moreover, E2 molecules are
detected in close proximity to LD-associated membranes. Finally, spherical virus-
like particles associated with membranes can be seen very close to the LD. Using
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specific antibodies the virus-like particles were shown to contain core protein as
well as E2 glycoprotein molecules indicating that these structures may represent
infectious HCV (Miyanari 2007). However, the precise mechanisms for the
formation and release of infectious HCV particles are still unknown.

Model systems for HCV research

For a long time HCV research was limited due to a lack of small animal models and
efficient cell culture systems. The development of the first HCV replicon system
(HCV RNA molecule, or region of HCV RNA, that replicates autonomously from a
single origin of replication) 10 years after the identification of the hepatitis C virus
offered the opportunity to investigate the molecular biology of HCV infection in a
standardized manner (Lohmann 1999).

HCV replicon systems. Using total RNA derived from the explanted liver of an
individual chronically infected with HCV genotype 1b, the entire HCV ORF
sequence was amplified and cloned in two overlapping fragments. The flanking
NTRs were amplified and cloned separately and all fragments were assembled into
a modified full-length sequence. Transfection experiments with in vitro transcripts
derived from the full-length clones failed to yield viral replication. For this reason,
two different subgenomic replicons consisting of the 5’IRES, the neomycin
phosphotransferase gene causing resistance to the antibiotic neomycin, the IRES
derived from the encephalomyocarditis virus (EMCV) and the NS2-3’NTR or NS3-
3’NTR sequence, respectively, were generated (Figure 3).
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Figure 3. Structure of subgenomic HCV replicons (Lohmann 1999). This figure illustrates
the genetic information of in vitro transcripts used for Huh7 transfection. A) Full-length transcript
derived from the explanted liver of a chronically infected subject. B) Subgenomic replicon
lacking the structural genes and the sequence encoding p7. C) Subgenomic replicon lacking C,
E1, E2, p7, and NS2 genes. neo, neomycin phosphotransferase gene; E-I, IRES of the
encephalomyocarditis virus (EMCV).
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In vitro transcripts derived from these constructs lacking the genome region
coding for the structural HCV proteins were used to transfect the hepatoma cell line
Huh7 (Lohmann 1999). The transcripts are bicistronic, i.e., the first cistron
containing the HCV IRES enables the translation of the neomycin
phosphotransferase as a tool for efficient selection of successfully transfected cells
and the second cistron containing the EMCV IRES directs translation of the HCV-
specific proteins. Only some Huh7 clones can replicate replicon-specific RNA in
titres of approximately 10° positive-stranded RNA copies per microgram total RNA.
Moreover, all encoded HCV proteins are detected predominantly in the cytoplasm
of the transfected Huh7 cells. The development of this replicon is a milestone in
HCV research with regard to the investigation of HCV RNA replication and HCV
protein analyses.

More recently, the methodology has been improved in order to achieve
significantly higher replication efficiency. Enhancement of HCV RNA replication
was achieved by the use of replicons harbouring cell culture-adapted point
mutations or deletions within the NS genes (Blight 2000, Lohmann 2001, Krieger
2001). Further development has led to the generation of selectable full-length HCV
replicons, i.e., genomic replicons that also contain genetic information for the
structural proteins Core, E1, and E2 (Pietschmann 2002, Blight 2002). This
improvement offered the opportunity to investigate the influence of the structural
proteins on HCV replication. Thus it has been possible to analyse the intracellular
localisation of these proteins althoughviral assembly and release has not been
achieved.

Another important milestone was reached when a subgenomic replicon based on
the HCV genotype 2a strain JFH-1 was generated (Kato 2003). This viral strain
derived from a Japanese subject with fulminant hepatitis C (Kato 2001). The
corresponding replicons showed higher RNA replication efficiency than previous
replicons. Moreover, cell lines distinct from Huh7, such as HepG2 or HelLa were
transfected efficiently with transcripts derived from the JFH-1 replicon (Date 2004,
Kato 2005).

HCV pseudotype virus particles (HCVpp). The generation of retroviral
pseudotypes bearing HCV E1 and E2 glycoproteins (HCVpp) offers the opportunity
to investigate E1-E2-dependent HCVpp entry into Huh7 cells and primary human
hepatocytes (Bartosch 2003a, Hsu 2003, Zhang 2004). In contrast to the HCV
replicons where cells were transfected with HCV-specific synthetic RNA
molecules, this method allows a detailed analysis of the early steps in the HCV life
cycle, e.g., adsorption and viral entry.

Infectious HCV particles in cell culture (HCVcc). Transfection of Huh7 and
‘cured’ Huh7.5 cells with full-length JFH-1 replicons led for the first time to the
production of infectious HCV virions (Zhong 2005, Wakita 2005). The construction
of a chimera with the core NS2 region derived from HCV strain J6 (genotype 2a)
and the remaining sequence derived from JFH-1 improved infectivity. Importantly,
the secreted viral particles are infectious in cell culture (HCVcc) (Wakita 2005,
Zhong 2005, Lindenbach 2005) as well as in chimeric mice with human liver grafts
as well as in chimpanzees (Lindenbach 2006).

An alternative strategy for the production of infectious HCV particles was
developed (Heller 2005): a full-length HCV construct (genotype 1b) was placed
between two ribozymes in a plasmid containing a tetracycline-responsive promoter.
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Huh7 cells were transfected with those plasmids, resulting in efficient viral
replication with HCV RNA titres of up to 107 copies/ml cell culture supernatant.

The development of cell culture systems that allow the production of infectious
HCV represents a breakthrough for HCV research and it is now possible to
investigate the whole viral life cycle from viral adsorption to virion release. These
studies will help to better understand the mechanisms of HCV pathogenesis and
they should significantly accelerate the development of HCV-specific antiviral
compounds.

Small animal models. Very recently, substantial progress was achieved in
establishing two mouse models for HCV infection viagenetically humanized mice
(Dorner 2011). In this experiment immunocompetent mice were transduced using
viral vectors containing the genetic information of four human proteins involved in
adsorption and entry of HCV into hepatocytes (CD81, SR-BI, CLDN1, OCLN).
This humanisation procedure enabled the authors to infect the transduced mice with
HCV. Although this mouse model does not enable complete HCV replication in
murine hepatocytes it will be useful to investigate the early steps of HCV infection
in vivo. Moreover, the approach should be suitable for the evaluation of HCV entry
inhibitors and vaccine candidates.

A second group of investigators have chosen another promising strategy for
HCV-specific humanisation of mice. After depleting murine hepatocytes human
CD34(+) hematopoietic stem cells and hepatocyte progenitors were cotransplantated
into transgenic mice leading to efficient engraftment of human leukocytes and
hepatocytes, respectively (Washburn 2011). A portion of the humanised mice
became infectable with primary HCV isolates resulting in low-level HCV RNA in
the murine liver. As a consequence HCV infection induced liver inflammation,
hepatitis, and fibrosis. Furthermore, due to the cotransplantation of CD34(+) human
hematopoietic stem cells, an HCV-specific T cell immune response could be
detected.

Both strategies are promising and have already delivered new insights into viral
replication and the pathogenesis of HCV. However, the methods lack some
important aspects and need to be improved. As soon as genetically humanised mice
that are able to replicate HCV completely are created they can be used for the
investigation of HCV pathogenesis and HCV-specific immune responses. The
Washburn method should be improved in order to achieve higher HCV replication
rates. Moreover, reconstitution of functional human B cells would make this mouse
model suitable to study the important HCV-specific antibody response.
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7. Prophylaxis and Vaccination

Heiner Wedemeyer

Introduction

Understanding the biology and modes of transmission of hepatitis viruses has
significantly improved over the last decades. Still, prophylactic vaccines are only
available against HAV and HBV. Although an enormous amount of basic and
clinical research has been performed to develop a vaccine against hepatitis C, it is
very unlikely that a prophylactic or therapeutic HCV vaccine will be licensed in the
next few years. A first Phase I11 vaccine trial against hepatitis E has been successful
in China; nevertheless, it is currently unknown if or when this vaccine will become
available in other countries. Prophylaxis of HCV, HDV (for HBV-infected patients)
and HEV infection therefore must still occur by avoiding all routes of exposure to
the respective hepatitis viruses discussed in detail in Chapters 1-4.

Prophylaxis of hepatitis viruses

Hepatitis A and E

The hepatitis A and E viruses are usually transmitted by oral ingestion of
contaminated food or water. Thus, particular caution is warranted when individuals
from low endemic areas such as western Europe and the US travel to countries with
a high prevalence of HAV and HEV infections. In addition, hepatitis E can also be a
zoonosis. A German case-control study identified 32% of all reported HEV
infections as being autochthonous infections, meaning not associated with travelling
to endemic countries (Wichmann 2008). In these patients consumption of offal and
wild boar meat was independently associated with HEV infection. This may have
significant implications for immunosuppressed patients as cases of chronic hepatitis
E with the development of advanced fibrosis have been described in patients after
organ transplantation (Kamar 2008, Pischke 2010). HEV has frequently been
detected in the meat of pigs; Danish farmers show a higher prevalence of HEV
antibodies. Importantly, zoonotic HEV infection is usually caused by HEV
genotype 3 while HEV genotype 1 can be found in travelling-associated hepatitis E.
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HAV and HEV can also be transmitted by blood transfusion although cases are
extremely rare.

Hepatitis B and D

HBV and HDV were transmitted frequently by blood transfusion before HBsAg
testing of all blood products was introduced in the 1970s. Since then, vertical
transmission and sexual exposure have become the most frequent routes of HBV
infection. Medical procedures still represent a potential source for HBV
transmissions and thus strict and careful application of standard hygienic
precautions for all medical interventions are absolutely mandatory, and not only in
endemic areas. This holds true in particular for immunocompromised individuals
who are highly susceptible to HBV infection as HBV is characterized by a very high
infectivity (Wedemeyer 1998). Moreover, immunosuppressed patients are at risk for
reactivation of occult HBV infection after serological recovery from hepatitis B.
Treatments with high doses of steroids and rituximab have especially been
identified as major risk factors for HBV reactivation (Lalazar 2007, Loomba 2008).
After a new diagnosis of HBV infection, all family members of the patient need to
be tested for their immune status against HBV. Immediate active vaccination is
recommended for all anti-HBc-negative contact persons. HBsAg-positive
individuals should use condoms during sexual intercourse if it is not known if the
partner has been vaccinated. Non-immune individuals who have experienced an
injury and were exposed to HBsAg-positive fluids should undergo passive
immunization with anti-HBs as soon as possible, preferentially within 2-12 hours
(Cornberg 2011).

Hepatitis C

Less than 1% of individuals who are exposed to HCV by an injury with
contaminated needles develop acute HCV infection. At Hannover Medical School,
not a single HCV seroconversion occurred after 166 occupational exposures with
anti-HCV positive blood in a period of 6 years (2000-2005). A systematic review of
the literature identified 22 studies including a total of 6,956 injuries with HCV
contaminated needles. Only 52 individuals (0.75%) became infected. The risk of
acute HCV infection was lower in Europe at 0.42% compared to eastern Asia at
1.5% (Kubitschke 2007). Thus, the risk of acquiring HCV infection after a needle-
stick injury is lower than frequently reported. Worldwide differences in HCV se-
roconversion rates may suggest that genetic factors provide some level of natural
resistance against HCV. Factors associated with a higher risk of HCV transmission
are likely to be the level of HCV viremia in the index patient, the amount of
transmitted fluid and the duration between contamination of the respective needle
and injury. Suggested follow-up procedures after needlestick injury are shown in
Figure 1.

Sexual intercourse with HCV-infected persons has clearly been identified as a risk
for HCV infection, as about 10-20% of patients with acute hepatitis C report this as
a potential risk factor (Deterding 2009; Table 1). However, there is also evidence
that the risk of acquiring HCV sexually is extremely low in individuals in stable
partnerships who avoid injuries. Cohort studies including more than 500 HCV-
infected patients followed over periods of more than 4 years could not identify any
cases of confirmed HCV transmission. Thus, guidelines generally do not
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recommend the use of condoms in monogamous relationships (EASL 2011).
However, this does not hold true for HIV-positive homosexual men. Several
outbreaks of acute hepatitis C have been described in this scenario (Fox 2008, Low
2008, van de Laar 2009). Transmitted cases had more sexual partners, increased
levels of high-risk sexual behaviour (in particular, fisting) and were more likely to
have shared drugs via a nasal or anal route than controls (Turner 2006).

Due to the low HCV prevalence in most European countries and due to a
relatively low vertical transmission rate of 1-6%, general screening of pregnant
women for anti-HCV is not recommended. Interestingly, transmission may be
higher for girls than for boys (European Pediatric Hepatitis C Virus Network 2005).
Transmission rates may be higher in HIV-infected women so pregnant women
should be tested for hepatitis C. Other factors possibly associated with high
transmission rates are the level of HCV viremia, maternal intravenous drug use, and
specific HLA types of the children. Cesarean sections are not recommended for
HCV RNA positive mothers as there is no clear evidence that these reduce
transmission rates. Children of HCV-infected mothers should be tested for HCV
RNA after 1 month as maternal anti-HCV antibodies can be detected for several
months after birth. Mothers with chronic hepatitis C can breast-feed their children as
long as they are HIV-negative and do not use intravenous drugs (European Pediatric
Hepatitis C Virus Network 2001, EASL 2011).

The Spanish Acute HCV Study Group has identified hospital admission as a
significant risk factor for acquiring HCV infection in Spain (Martinez-Bauer 2008).
The data are in line with reports from Italy (Santantonio 2006) and the USA (Corey
2006). We have reported data from the German Hep-Net Acute HCV Studies and
found 38 cases (15% of the entire cohort) of acute HCV patients who reported a
medical procedure as the most likely risk factor for having acquired HCV
(Deterding 2008). The majority of those were hospital admissions with surgery in
30 cases; other invasive procedures, including dental treatment, were present in only
4 cases. Medical procedures were significantly more often the probable cause of
infection in patients older than 30 years of age (p=0.002) but not associated with
disease severity or time from exposure to onset of symptoms. Thus, medical
treatment per se still represents a significant risk factor for HCV infection — even in
developed countries. Strict adherence to universal precaution guidelines is urgently
warranted.

Vaccination against hepatitis A

The first active vaccine against HAV was licensed in 1995. The currently available
inactive vaccines are manufactured from cell culture-adapted HAV, grown either in
human fibroblasts or diploid cells (Nothdurft 2008). Two doses of the vaccine are
recommended. The second dose should be given between 6 and 18 months after the
first dose. All vaccines are highly immunogenic and basically all vaccinated healthy
persons develop protective anti-HAV antibodies. Similar vaccine responses are
obtained in both children and adults and no relevant regional differences in response
to HAV vaccination have been observed. The weakest vaccine responses have been
described for young children receiving a 0, 1, 2 months schedule (Hammitt 2008).
Patients with chronic liver disease do respond to vaccination but may display lower
anti-HAV titers (Keeffe 1998). A combined vaccine against HAV and HBV is
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available that needs to be administered three times, on a 0, 1, and 6 months
schedule. More than 80% of healthy individuals have detectable HAV antibodies by
day 21 applying an accelerated vaccine schedule of 0, 7 and 21 days using the
combined HAV/HBYV vaccine, and all study subjects were immune against HAV by
2 months (Kallinowski 2003).

HAV vaccines are very well tolerated and no serious adverse events have been
linked with the administration of HAV vaccines (Nothdurft 2008). The vaccine can
safely be given together with other vaccines or immunoglobulins without
compromising the development of protective antibodies.

Vaccination is recommended for non-immune individuals who plan to travel to
endemic countries, medical health professionals, homosexual men, persons in
contact with hepatitis A patients, and individuals with chronic liver diseases. Some
studies have suggested that patients with chronic hepatitis C have a higher risk of
developing fulminant hepatitis A (Vento 1998) although this finding has not been
confirmed by other investigators (Deterding 2006). The implementation of
childhood vaccination programs has led to significant and impressive declines of
HAV infections in several countries, justifying further efforts aiming at controlling
the spread of HAV in endemic countries (Hendrickx 2008). It is important to
highlight that most studies have confirmed that HAV vaccination is cost-effective
(Rein 2008, Hollinger 2007).

Long-term follow-up studies after complete HAV vaccination have been
published. Interestingly, anti-HAYV titers sharply decline during the first year after
vaccination but remain detectable in almost all individuals for at least 10-15 years
after vaccination (Van Herck 2011). Based on these studies it was estimated that
protective anti-HAV antibodies should persist for at least 27-30 years after
successful vaccination (Hammitt 2008, Bovier 2010).

Vaccination against hepatitis B

The hepatitis B vaccine is the first vaccine able to reduce the incidence of cancer. In
Taiwan, a significant decline in cases of childhood hepatocellular carcinoma has
been observed since the implementation of programs to vaccinate all infants against
HBV (Chang 1997). This landmark study impressively highlighted the usefulness of
universal vaccination against HBV in endemic countries. Controversial discussions
are ongoing regarding to what extent universal vaccination against HBV may be
cost-effective in low-endemic places such as the UK, the Netherlands or
Scandinavia (Zuckerman 2007). In 1992 the World Health Organization
recommended general vaccination against hepatitis B. It should be possible to
eradicate hepatitis B by worldwide implementation of this recommendation,
because humans are the only epidemiologically relevant host for HBV. 179
countries have introduced a hepatitis B vaccine in their national infant immunization
schedules by the end of 2010, including parts of India and the Sudan (WHO 2011).

The first plasma-derived hepatitis B vaccine was approved by FDA in 1981.
Recombinant vaccines consisting of HBsAg produced in yeast became available in
1986. In the US, two recombinant vaccines are licensed (Recombivax® and
Engerix-B®) while additional vaccines are used in other countries. The vaccines are
administered three times, on a 0, 1, and 6 months schedule.
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Who should be vaccinated? (The German Guidelines (Cornberg 2011))

— Hepatitis B high-risk persons working in health care settings including trainees,
students, cleaning personnel;

— Personnel in psychiatric facilities or comparable welfare institutions for
cerebrally damaged or disturbed patients; other persons who are at risk because
of blood contact with possibly infected persons dependent on the risk
evaluation, e.g., persons giving first aid professionally or voluntarily,
employees of ambulance services, police officers, social workers, and prison
staff who have contact with drug addicts;

— Patients with chronic kidney disease, dialysis patients, patients with frequent
blood or blood component transfusions (e.g., hemophiliacs), patients prior to
extensive surgery (e.g., before operations using heart-lung machine. The
urgency of the operation and the patient’s wish for vaccination protection are
of primary importance);

— Persons with chronic liver disease including chronic diseases with liver
involvement as well as HIV-positive persons without HBV markers;

— Persons at risk of contact with HBsAg carriers in the family or shared housing,
sexual partners of HBSAg carriers;

— Patients in psychiatric facilities or residents of comparable welfare institutions
for cerebrally damaged or disturbed persons as well as persons in sheltered
workshops;

— Special high-risk groups, e.g., homosexually active men, regular drug users,
sex workers, prisoners serving extended sentences;

— Persons at risk of contacting HBsAg carriers in facilities (kindergarten,
children’s homes, nursing homes, school classes, day care groups);

— Persons travelling to regions with high hepatitis B prevalence for an extended
period of time or with expected close contact with the local population;

— Persons who have been injured by possibly contaminated items, e.g., needle
puncture (see post-exposition prophylaxis);

— Infants of HBsAg-positive mothers or of mothers with unknown HBsAg status
(independent of weight at birth) (see post-exposition prophylaxis).

Routine testing for previous contact with hepatitis B is not necessary before
vaccination unless the person belongs to a risk group and may have acquired
hepatitis B before. Pre-vaccine testing is usually not cost-effective in populations
with anti-HBc prevalence below 20%. Vaccination of an HBsAg-positive individual
can be performed without any danger — however, it is ineffective.

Efficacy of vaccination against hepatitis B

A response to HBV vaccination is determined by the development of anti-HBs
antibodies, detectable in 90-95% of individuals one month after a complete
vaccination schedule (Wedemeyer 2007, Coates 2001). Responses are lower in
elderly people and much weaker in immunocompromised persons such as organ
transplant recipients, patients receiving hemodialysis and HIV-infected individuals.
In case of vaccine non-response, another three courses of vaccine should be
administered and the dose of the vaccine should be increased. Other possibilities to
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increase the immunogenicity of HBV vaccines include intradermal application and
coadministration of adjuvants and cytokines (Cornberg 2011). The response to
vaccination should be controlled in high-risk individuals such as medical health
professionals and immunocompromised persons. Some guidelines also recommend
testing elderly persons after vaccinations as vaccine response does decline more
rapidly in the elderly (Wolters 2003).

Post-exposure prophylaxis

Non-immune persons who have been in contact with HBV-contaminated materials
(e.g., needles) or who have had sexual intercourse with an HBV-infected person
should undergo active-passive immunization (active immunization plus hepatitis B
immunoglobulin) as soon as possible — preferentially within the first 48 hours of
exposure to HBV. Individuals previously vaccinated but who have an anti-HBs titer
of <10 IU/L should also be vaccinated both actively and passively. No action is
required if an anti-HBs titer of >100 IU/I is documented; active vaccination alone is
sufficient for persons with intermediate anti-HBs titers between 10 and 100 IU/L
(Cornberg 2011).

Safety of HBV vaccines

Several hundred million individuals have been vaccinated against hepatitis B. The
vaccine is very well tolerated. Injection site reactions in the first 1-3 days and mild
general reactions are common, although they are usually not long lasting. Whether
there is a causal relationship between the vaccination and the seldomly observed
neurological disorders occurring around the time of vaccination is not clear. In the
majority of these case reports the concomitant events most likely occurred
coincidentally and are independent and not causally related. That hepatitis B
vaccination causes and induces acute episodes of multiple sclerosis or other
demyelating diseases are repeatedly discussed (Geier 2001, Hernan 2004, Girard
2005). However, there are no scientific facts proving such a relationship. Numerous
studies have not been able to find a causal relationship between the postulated
disease and the vaccination (Sadovnick 2000, Monteyne 2000, Ascherio 2001,
Confavreux 2001, Schattner 2005).

Long-term immunogenicity of hepatitis B vaccination

Several studies have been published in recent years investigating the long-term
efficacy of HBV vaccination. After 10-15 years, between one third and two thirds of
vaccinated individuals have completely lost anti-HBs antibodies and only a minority
maintain titers of >100 IU/L. However, in low/intermediate endemic countries such
as Italy, this loss in protective humoral immunity did not lead to many cases of
acute or even chronic HBV infection (Zanetti 2005). To what extent memory B and
T cell responses contribute to a relative protection against HBV in the absence of
anti-HBs remains to be determined. Nevertheless, in high-endemic countries such as
Gambia a significant proportion of infants develop anti-HBc indicating active HBV
infection (18%) and some children develop chronic hepatitis B (van der Sande
2007). Thus, persons at risk should receive booster immunization if HBs antibodies
have been lost.
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Prevention of vertical HBV transmission

Infants of HBsAg-positive mothers should be immunized actively and passively
within 12 hours of birth. This is very important as the vertical HBV transmission
rate can be reduced from 95% to <5% (Ranger-Rogez 2004). Mothers with high
HBV viremia, of >1 million IU/ml, should receive in addition antiviral therapy with
a potent HBV polymerase inhibitor (European Association For The Study Of The
Liver 2009, Peterson 2011, Han 2011). Tenofovir and telbivudine have been
classified as Category B drugs by the FDA and can therefore be given during
pregnancy as no increased rates of birth defects have been reported. If active/passive
immunization has been performed, there is no need to recommend cesarean section.
Mothers of vaccinated infants can breastfeed unless antiviral medications are being
taken by the mother, which can pass through breast milk.

Vaccination against hepatitis C

No prophylactic or therapeutic vaccine against hepatitis C is available. As re-
infections after spontaneous or treatment-induced recovery from hepatitis C virus
infection have frequently been reported, the aim of a prophylactic vaccine will very
likely be not to prevent completely an infection with HCV but rather to modulate
immune responses in such a way that the frequency of evolution to a chronic state
can be reduced (Torresi 2011).

HCV specific T cell responses play an important role in the natural course of
HCV infection. The adaptive T cell response is mediated both by CD4+ helper T
cells and CD8+ killer T cells. Several groups have consistently found an association
between a strong, multispecific and maintained HCV-specific CD4+ and CD8+ T
cell response and the resolution of acute HCV infection. While CD4+ T cells seem
to be present for several years after recovery, there are conflicting data whether
HCV-specific CD8+ T cells responses persist or decline over time (Wiegand 2007).
However, several studies have observed durable HCV-specific T cells in HCV-
seronegative individuals who were exposed to HCV by occupational exposure or as
household members of HCV-positive partners, but who never became HCV RNA
positive. These observations suggest that HCV-specific T cells may be induced
upon subclinical exposure and may contribute to protection against clinically
apparent HCV infection. T cell responses are usually much weaker in chronic
hepatitis C. The frequency of specific cells is low but also effector function of
HCV-specific T cells is impaired. Different mechanisms are discussed as being
responsible for this impaired T cell function, including higher frequencies of
regulatory T cells (Tregs), altered dendritic cell activity, upregulation of inhibitory
molecules such as PD-1, CTL-A4 or 2B4 on T cells and escape mutations. HCV
proteins can directly or indirectly contribute to altered functions of different
immune cells (Rehermann 2009).

To what extent humoral immune responses against HCV contribute to
spontaneous clearance of acute hepatitis C is less clear. Higher levels of neutralizing
antibodies early during the infection are associated with viral clearance (Pestka
2007). Antibodies with neutralizing properties occur at high levels during chronic
infection, although HCV constantly escapes these neutralizing antibodies (von Hahn
2007). Yet, no completely sterilizing humoural anti-HCV immunity exists in the
long-term after recovery (Rehermann 2009). Attempts to use neutralizing antibodies
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to prevent HCV re-infection after liver transplant have not been successful (Gordon
2011).

Few Phase | vaccine studies based either on vaccination with HCV peptides, HCV
proteins alone or in combination with distinct adjuvants or recombinant viral vectors
expressing HCV proteins have been completed (Torresi 2011). HCV-specific T cells
or antibodies against HCV were induced by these vaccines in healthy individuals.
Studies in chimpanzees have shown that it is very unlikely that a vaccine will be
completely protective against heterologous HCV infections. However, a reasonable
approach might be the development of a vaccine that does not confer 100%
protection against acute infection but prevents progression of acute hepatitis C to
chronic infection. In any case, there are no vaccine programs that have reached
Phase 111 yet (Halliday 2011). Therapeutic vaccination against hepatitis C has also
been explored (Klade 2008, Wedemeyer 2009, Torresi 2011). These studies show
that induction of HCV-specific humoural or cellular immune responses is possible
even in chronically infected individuals. The first studies showed a modest antiviral
efficacy of HCV vaccination in some patients (Sallberg 2009, Habersetzer 2011,
Wedemeyer 2011). Therapeutic vaccination was also able to enhance responses to
interferon o and ribavirin treatment (Pockros 2010, Wedemeyer 2011). Future
studies will need to explore the potential role of HCV vaccines in combination with
direct acting antivirals against hepatitis C.

Vaccination against hepatitis E

A Phase Il vaccine trial performed in Nepal with 200 soldiers showed a vaccine
efficacy of 95% for an HEV recombinant protein (Shrestha 2007). However, the
development of this vaccine has been stopped. Since then, in September 2010, data
from a very large Phase Il trial were reported involving about 110,000 individuals
in China (Zhu 2010). The vaccine efficacy of HEV 239 was 100% after three doses
to prevent cases of symptomatic acute hepatitis E. However, it is currently unknown
if this HEV genotype 1 vaccine also prevents against zoonotic HEV genotype 3
infections. Moreover, vaccine efficacy in special risk groups such patients with end-
stage liver disease, immunocompromised individuals or elderly persons is unknown.
Finally, the duration of protection needs to be determined (Wedemeyer 2011). It is
currently unknown if and when the Chinese vaccine HEV-239 will become
available in other countries. Until then, preventive hygienic measures remain the
only option to avoid HEV infection.
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